
Package: weibulltools (via r-universe)
September 8, 2024

Type Package

Title Statistical Methods for Life Data Analysis

Version 2.1.0

Description Provides statistical methods and visualizations that are
often used in reliability engineering. Comprises a compact and
easily accessible set of methods and visualization tools that
make the examination and adjustment as well as the analysis and
interpretation of field data (and bench tests) as simple as
possible. Non-parametric estimators like Median Ranks,
Kaplan-Meier (Abernethy, 2006, <ISBN:978-0-9653062-3-2>),
Johnson (Johnson, 1964, <ISBN:978-0444403223>), and
Nelson-Aalen for failure probability estimation within samples
that contain failures as well as censored data are included.
The package supports methods like Maximum Likelihood and Rank
Regression, (Genschel and Meeker, 2010,
<DOI:10.1080/08982112.2010.503447>) for the estimation of
multiple parametric lifetime distributions, as well as the
computation of confidence intervals of quantiles and
probabilities using the delta method related to Fisher's
confidence intervals (Meeker and Escobar, 1998,
<ISBN:9780471673279>) and the beta-binomial confidence bounds.
If desired, mixture model analysis can be done with segmented
regression and the EM algorithm. Besides the well-known Weibull
analysis, the package also contains Monte Carlo methods for the
correction and completion of imprecisely recorded or unknown
lifetime characteristics. (Verband der Automobilindustrie e.V.
(VDA), 2016, <ISSN:0943-9412>). Plots are created statically
('ggplot2') or interactively ('plotly') and can be customized
with functions of the respective visualization package. The
graphical technique of probability plotting as well as the
addition of regression lines and confidence bounds to existing
plots are supported.

License GPL-2

URL https://tim-tu.github.io/weibulltools/,

https://github.com/Tim-TU/weibulltools

1

https://doi.org/10.1080/08982112.2010.503447
https://tim-tu.github.io/weibulltools/
https://github.com/Tim-TU/weibulltools

2 Contents

BugReports https://github.com/Tim-TU/weibulltools/issues

Imports dplyr, ggplot2, lifecycle (>= 1.0.0), magrittr, plotly, purrr,
Rcpp, sandwich, segmented, tibble

LinkingTo Rcpp (>= 0.12.18), RcppArmadillo

Depends R (>= 3.5.0)

Language en-US

Encoding UTF-8

LazyData true

RoxygenNote 7.2.3

Suggests knitr, rmarkdown, testthat, pillar (>= 1.9.0)

VignetteBuilder knitr

Config/testthat/edition 3

RdMacros lifecycle

Repository https://tim-tu.r-universe.dev

RemoteUrl https://github.com/tim-tu/weibulltools

RemoteRef HEAD

RemoteSha df01bb9e4f437ae63bf0ee2eba8e1d2b5c27ecfe

Contents
weibulltools-package . 3
alloy . 4
confint_betabinom . 4
confint_betabinom.default . 8
confint_fisher . 11
confint_fisher.default . 14
delta_method . 17
dist_delay . 19
dist_delay.default . 21
dist_delay_register . 23
dist_delay_report . 24
dist_mileage . 25
dist_mileage.default . 26
estimate_cdf . 28
estimate_cdf.default . 30
field_data . 33
johnson_method . 34
kaplan_method . 36
loglik_function . 37
loglik_function.default . 39
loglik_profiling . 41
loglik_profiling.default . 43
mcs_delay . 45

https://github.com/Tim-TU/weibulltools/issues

weibulltools-package 3

mcs_delay.default . 48
mcs_delays . 51
mcs_delay_data . 53
mcs_delay_register . 56
mcs_delay_report . 58
mcs_mileage . 60
mcs_mileage.default . 62
mcs_mileage_data . 64
mixmod_em . 65
mixmod_em.default . 68
mixmod_regression . 70
mixmod_regression.default . 73
ml_estimation . 76
ml_estimation.default . 78
mr_method . 80
nelson_method . 82
plot_conf . 83
plot_conf.default . 85
plot_mod . 88
plot_mod.default . 90
plot_mod_mix . 92
plot_pop . 94
plot_prob . 97
plot_prob.default . 99
plot_prob_mix . 101
predict_prob . 103
predict_quantile . 105
rank_regression . 106
rank_regression.default . 110
reliability_data . 112
r_squared_profiling . 114
r_squared_profiling.default . 116
shock . 118
voltage . 118

Index 120

weibulltools-package weibulltools

Description

Provides statistical methods and visualizations that are often used in reliability engineering. Com-
prises a compact and easily accessible set of methods and visualization tools that make the exam-
ination and adjustment as well as the analysis and interpretation of field data (and bench tests) as
simple as possible.

4 confint_betabinom

Besides the well-known Weibull analysis, the package supports multiple lifetime distributions and
also contains Monte Carlo methods for the correction and completion of imprecisely recorded or
unknown lifetime characteristics.

Plots are created statically (ggplot2) or interactively (plotly) and can be customized with func-
tions of the respective visualization package.

alloy Fatigue Life for Alloy T7989 Specimens

Description

A dataset containing the number of cycles of fatigue life for Alloy T7987 specimens.

Usage

alloy

Format

A tibble with 72 rows and 2 variables:

cycles Number of cycles (in thousands).

status If specimen failed before 300 thousand cycles 1 else 0.

Source

Meeker, William Q; Escobar, Luis A., Statistical Methods for Reliability Data, New York: Wiley
series in probability and statistics (1998, p.131)

confint_betabinom Beta Binomial Confidence Bounds for Quantiles and Probabilities

Description

This function computes the non-parametric beta binomial confidence bounds (BB) for quantiles and
failure probabilities.

confint_betabinom 5

Usage

confint_betabinom(x, ...)

S3 method for class 'wt_model'
confint_betabinom(
x,
b_lives = c(0.01, 0.1, 0.5),
bounds = c("two_sided", "lower", "upper"),
conf_level = 0.95,
direction = c("y", "x"),
...

)

Arguments

x A list with class wt_model (and further classes) returned by rank_regression.

... Further arguments passed to or from other methods. Currently not used.

b_lives A numeric vector indicating the probabilities p of the Bp-lives (quantiles) to be
considered.

bounds A character string specifying the bound(s) to be computed.

conf_level Confidence level of the interval.

direction A character string specifying the direction of the confidence interval. "y" for
failure probabilities or "x" for quantiles.

Details

The procedure is similar to the Median Ranks method but with the difference that instead of finding
the probability for the j-th rank at the 50% level the probability (probabilities) has (have) to be found
at the given confidence level.

Value

A tibble with class wt_confint containing the following columns:

• x : An ordered sequence of the lifetime characteristic regarding the failed units, starting at
min(x) and ending up at max(x). With b_lives = c(0.01, 0.1, 0.5) the 1%, 10% and 50%
quantiles are additionally included in x, but only if the specified probabilities are in the range
of the estimated probabilities.

• rank : Interpolated ranks as a function of probabilities, computed with the converted approx-
imation formula of Benard.

• prob : An ordered sequence of probabilities with specified b_lives included.

• lower_bound : Provided, if bounds is one of "two_sided" or "lower". Lower confidence
limits with respect to direction, i.e. limits for quantiles or probabilities.

• upper_bound : Provided, if bounds is one of "two_sided" or "upper". Upper confidence
limits with respect to direction, i.e. limits for quantiles or probabilities.

6 confint_betabinom

• cdf_estimation_method : Method for the estimation of failure probabilities which was spec-
ified in estimate_cdf.

Further information is stored in the attributes of this tibble:

• distribution : Distribution which was specified in rank_regression.

• bounds : Specified bound(s).

• direction : Specified direction.

• model_estimation : Input list with class wt_model.

Examples

Reliability data preparation:
Data for two-parametric model:
data_2p <- reliability_data(

shock,
x = distance,
status = status

)

Data for three-parametric model:
data_3p <- reliability_data(

alloy,
x = cycles,
status = status

)

Probability estimation:
prob_tbl_2p <- estimate_cdf(

data_2p,
methods = "johnson"

)

prob_tbl_3p <- estimate_cdf(
data_3p,
methods = "johnson"

)

prob_tbl_mult <- estimate_cdf(
data_3p,
methods = c("johnson", "mr")

)

Model estimation with rank_regression():
rr_2p <- rank_regression(

prob_tbl_2p,
distribution = "weibull"

)

rr_3p <- rank_regression(
prob_tbl_3p,
distribution = "lognormal3",

confint_betabinom 7

conf_level = 0.90
)

rr_lists <- rank_regression(
prob_tbl_mult,
distribution = "loglogistic3",
conf_level = 0.90

)

Example 1 - Two-sided 95% confidence interval for probabilities ('y'):
conf_betabin_1 <- confint_betabinom(

x = rr_2p,
bounds = "two_sided",
conf_level = 0.95,
direction = "y"

)

Example 2 - One-sided lower/upper 90% confidence interval for quantiles ('x'):
conf_betabin_2_1 <- confint_betabinom(

x = rr_2p,
bounds = "lower",
conf_level = 0.90,
direction = "x"

)

conf_betabin_2_2 <- confint_betabinom(
x = rr_2p,
bounds = "upper",
conf_level = 0.90,
direction = "x"

)

Example 3 - Two-sided 90% confidence intervals for both directions using
a three-parametric model:
conf_betabin_3_1 <- confint_betabinom(

x = rr_3p,
bounds = "two_sided",
conf_level = 0.90,
direction = "y"

)

conf_betabin_3_2 <- confint_betabinom(
x = rr_3p,
bounds = "two_sided",
conf_level = 0.90,
direction = "x"

)

Example 4 - Confidence intervals if multiple methods in estimate_cdf, i.e.
"johnson" and "mr", were specified:

conf_betabin_4 <- confint_betabinom(
x = rr_lists,

8 confint_betabinom.default

bounds = "two_sided",
conf_level = 0.99,
direction = "y"

)

confint_betabinom.default

Beta Binomial Confidence Bounds for Quantiles and Probabilities

Description

This function computes the non-parametric beta binomial confidence bounds (BB) for quantiles and
failure probabilities.

Usage

Default S3 method:
confint_betabinom(

x,
status,
dist_params,
distribution = c("weibull", "lognormal", "loglogistic", "sev", "normal", "logistic",

"weibull3", "lognormal3", "loglogistic3", "exponential", "exponential2"),
b_lives = c(0.01, 0.1, 0.5),
bounds = c("two_sided", "lower", "upper"),
conf_level = 0.95,
direction = c("y", "x"),
...

)

Arguments

x A numeric vector which consists of lifetime data. Lifetime data could be ev-
ery characteristic influencing the reliability of a product, e.g. operating time
(days/months in service), mileage (km, miles), load cycles.

status A vector of binary data (0 or 1) indicating whether a unit is a right censored
observation (= 0) or a failure (= 1).

dist_params The parameters (coefficients) returned by rank_regression.

distribution Supposed distribution of the random variable. Has to be in line with the specifi-
cation made in rank_regression.

b_lives A numeric vector indicating the probabilities p of the Bp-lives (quantiles) to be
considered.

bounds A character string specifying the bound(s) to be computed.

conf_level Confidence level of the interval.

confint_betabinom.default 9

direction A character string specifying the direction of the confidence interval. "y" for
failure probabilities or "x" for quantiles.

... Further arguments passed to or from other methods. Currently not used.

Details

The procedure is similar to the Median Ranks method but with the difference that instead of finding
the probability for the j-th rank at the 50% level the probability (probabilities) has (have) to be found
at the given confidence level.

Value

A tibble with class wt_confint containing the following columns:

• x : An ordered sequence of the lifetime characteristic regarding the failed units, starting at
min(x) and ending up at max(x). With b_lives = c(0.01, 0.1, 0.5) the 1%, 10% and 50%
quantiles are additionally included in x, but only if the specified probabilities are in the range
of the estimated probabilities.

• rank : Interpolated ranks as a function of probabilities, computed with the converted approx-
imation formula of Benard.

• prob : An ordered sequence of probabilities with specified b_lives included.

• lower_bound : Provided, if bounds is one of "two_sided" or "lower". Lower confidence
limits with respect to direction, i.e. limits for quantiles or probabilities.

• upper_bound : Provided, if bounds is one of "two_sided" or "upper". Upper confidence
limits with respect to direction, i.e. limits for quantiles or probabilities.

• cdf_estimation_method : A character that is always NA_character. Only needed for inter-
nal use.

Further information is stored in the attributes of this tibble:

• distribution : Distribution which was specified in rank_regression.

• bounds : Specified bound(s).

• direction : Specified direction.

See Also

confint_betabinom

Examples

Vectors:
obs <- seq(10000, 100000, 10000)
status_1 <- c(0, 1, 1, 0, 0, 0, 1, 0, 1, 0)

cycles <- alloy$cycles
status_2 <- alloy$status

Probability estimation:
prob_tbl <- estimate_cdf(

10 confint_betabinom.default

x = obs,
status = status_1,
method = "johnson"

)

prob_tbl_2 <- estimate_cdf(
x = cycles,
status = status_2,
method = "johnson"

)

Model estimation with rank_regression():
rr <- rank_regression(

x = prob_tbl$x,
y = prob_tbl$prob,
status = prob_tbl$status,
distribution = "weibull",
conf_level = 0.9

)

rr_2 <- rank_regression(
x = prob_tbl_2$x,
y = prob_tbl_2$prob,
status = prob_tbl_2$status,
distribution = "lognormal3"

)

Example 1 - Two-sided 95% confidence interval for probabilities ('y'):
conf_betabin_1 <- confint_betabinom(

x = prob_tbl$x,
status = prob_tbl$status,
dist_params = rr$coefficients,
distribution = "weibull",
bounds = "two_sided",
conf_level = 0.95,
direction = "y"

)

Example 2 - One-sided lower/upper 90% confidence interval for quantiles ('x'):
conf_betabin_2_1 <- confint_betabinom(

x = prob_tbl$x,
status = prob_tbl$status,
dist_params = rr$coefficients,
distribution = "weibull",
bounds = "lower",
conf_level = 0.9,
direction = "x"

)

conf_betabin_2_2 <- confint_betabinom(
x = prob_tbl$x,
status = prob_tbl$status,
dist_params = rr$coefficients,

confint_fisher 11

distribution = "weibull",
bounds = "upper",
conf_level = 0.9,
direction = "x"

)

Example 3 - Two-sided 90% confidence intervals for both directions using
a three-parametric model:

conf_betabin_3_1 <- confint_betabinom(
x = prob_tbl_2$x,
status = prob_tbl_2$status,
dist_params = rr_2$coefficients,
distribution = "lognormal3",
bounds = "two_sided",
conf_level = 0.9,
direction = "y"

)

conf_betabin_3_2 <- confint_betabinom(
x = prob_tbl_2$x,
status = prob_tbl_2$status,
dist_params = rr_2$coefficients,
distribution = "lognormal3",
bounds = "two_sided",
conf_level = 0.9,
direction = "x"

)

confint_fisher Fisher’s Confidence Bounds for Quantiles and Probabilities

Description

This function computes normal-approximation confidence intervals for quantiles and failure proba-
bilities.

Usage

confint_fisher(x, ...)

S3 method for class 'wt_model'
confint_fisher(
x,
b_lives = c(0.01, 0.1, 0.5),
bounds = c("two_sided", "lower", "upper"),
conf_level = 0.95,
direction = c("y", "x"),
...

)

12 confint_fisher

Arguments

x A list with classes wt_model and wt_ml_estimation returned by ml_estimation.

... Further arguments passed to or from other methods. Currently not used.

b_lives A numeric vector indicating the probabilities p of the Bp-lives (quantiles) to be
considered.

bounds A character string specifying the bound(s) to be computed.

conf_level Confidence level of the interval.

direction A character string specifying the direction of the confidence interval. "y" for
failure probabilities or "x" for quantiles.

Details

The basis for the calculation of these confidence bounds are the standard errors obtained by the
delta method.

The bounds on the probability are determined by the z-procedure. See ’References’ for more infor-
mation on this approach.

Value

A tibble with class wt_confint containing the following columns:

• x : An ordered sequence of the lifetime characteristic regarding the failed units, starting at
min(x) and ending up at max(x). With b_lives = c(0.01, 0.1, 0.5) the 1%, 10% and 50%
quantiles are additionally included in x, but only if the specified probabilities are in the range
of the estimated probabilities.

• prob : An ordered sequence of probabilities with specified b_lives included.

• std_err : Estimated standard errors with respect to direction.

• lower_bound : Provided, if bounds is one of "two_sided" or "lower". Lower confidence
limits with respect to direction, i.e. limits for quantiles or probabilities.

• upper_bound : Provided, if bounds is one of "two_sided" or "upper". Upper confidence
limits with respect to direction, i.e. limits for quantiles or probabilities.

• cdf_estimation_method : A character that is always NA_character. Only needed for inter-
nal use.

Further information is stored in the attributes of this tibble:

• distribution : Distribution which was specified in ml_estimation.

• bounds : Specified bound(s).

• direction : Specified direction.

• model_estimation : Input list with classes wt_model and wt_ml_estimation.

References

Meeker, William Q; Escobar, Luis A., Statistical methods for reliability data, New York: Wiley
series in probability and statistics, 1998

confint_fisher 13

Examples

Reliability data preparation:
Data for two-parametric model:
data_2p <- reliability_data(

shock,
x = distance,
status = status

)

Data for three-parametric model:
data_3p <- reliability_data(

alloy,
x = cycles,
status = status

)

Model estimation with ml_estimation():
ml_2p <- ml_estimation(

data_2p,
distribution = "weibull"

)

ml_3p <- ml_estimation(
data_3p,
distribution = "lognormal3",
conf_level = 0.90

)

Example 1 - Two-sided 95% confidence interval for probabilities ('y'):
conf_fisher_1 <- confint_fisher(

x = ml_2p,
bounds = "two_sided",
conf_level = 0.95,
direction = "y"

)

Example 2 - One-sided lower/upper 90% confidence interval for quantiles ('x'):
conf_fisher_2_1 <- confint_fisher(

x = ml_2p,
bounds = "lower",
conf_level = 0.90,
direction = "x"

)

conf_fisher_2_2 <- confint_fisher(
x = ml_2p,
bounds = "upper",
conf_level = 0.90,
direction = "x"

)

14 confint_fisher.default

Example 3 - Two-sided 90% confidence intervals for both directions using
a three-parametric model:

conf_fisher_3_1 <- confint_fisher(
x = ml_3p,
bounds = "two_sided",
conf_level = 0.90,
direction = "y"

)

conf_fisher_3_2 <- confint_fisher(
x = ml_3p,
bounds = "two_sided",
conf_level = 0.90,
direction = "x"

)

confint_fisher.default

Fisher’s Confidence Bounds for Quantiles and Probabilities

Description

This function computes normal-approximation confidence intervals for quantiles and failure proba-
bilities.

Usage

Default S3 method:
confint_fisher(

x,
status,
dist_params,
dist_varcov,
distribution = c("weibull", "lognormal", "loglogistic", "sev", "normal", "logistic",

"weibull3", "lognormal3", "loglogistic3", "exponential", "exponential2"),
b_lives = c(0.01, 0.1, 0.5),
bounds = c("two_sided", "lower", "upper"),
conf_level = 0.95,
direction = c("y", "x"),
...

)

Arguments

x A numeric vector which consists of lifetime data. Lifetime data could be ev-
ery characteristic influencing the reliability of a product, e.g. operating time
(days/months in service), mileage (km, miles), load cycles.

confint_fisher.default 15

status A vector of binary data (0 or 1) indicating whether a unit is a right censored
observation (= 0) or a failure (= 1).

dist_params The parameters (coefficients) returned by ml_estimation.

dist_varcov The variance-covariance-matrix (varcov) returned by ml_estimation.

distribution Supposed distribution of the random variable. Has to be in line with the specifi-
cation made in ml_estimation.

b_lives A numeric vector indicating the probabilities p of the Bp-lives (quantiles) to be
considered.

bounds A character string specifying the bound(s) to be computed.

conf_level Confidence level of the interval.

direction A character string specifying the direction of the confidence interval. "y" for
failure probabilities or "x" for quantiles.

... Further arguments passed to or from other methods. Currently not used.

Details

The basis for the calculation of these confidence bounds are the standard errors obtained by the
delta method.

The bounds on the probability are determined by the z-procedure. See ’References’ for more infor-
mation on this approach.

Value

A tibble with class wt_confint containing the following columns:

• x : An ordered sequence of the lifetime characteristic regarding the failed units, starting at
min(x) and ending up at max(x). With b_lives = c(0.01, 0.1, 0.5) the 1%, 10% and 50%
quantiles are additionally included in x, but only if the specified probabilities are in the range
of the estimated probabilities.

• prob : An ordered sequence of probabilities with specified b_lives included.

• std_err : Estimated standard errors with respect to direction.

• lower_bound : Provided, if bounds is one of "two_sided" or "lower". Lower confidence
limits with respect to direction, i.e. limits for quantiles or probabilities.

• upper_bound : Provided, if bounds is one of "two_sided" or "upper". Upper confidence
limits with respect to direction, i.e. limits for quantiles or probabilities.

• cdf_estimation_method : A character that is always NA_character. Only needed for inter-
nal use.

Further information is stored in the attributes of this tibble:

• distribution : Distribution which was specified in ml_estimation.

• bounds : Specified bound(s).

• direction : Specified direction.

16 confint_fisher.default

References

Meeker, William Q; Escobar, Luis A., Statistical methods for reliability data, New York: Wiley
series in probability and statistics, 1998

See Also

confint_fisher

Examples

Vectors:
obs <- seq(10000, 100000, 10000)
status_1 <- c(0, 1, 1, 0, 0, 0, 1, 0, 1, 0)

cycles <- alloy$cycles
status_2 <- alloy$status

Model estimation with ml_estimation():
ml <- ml_estimation(

x = obs,
status = status_1,
distribution = "weibull",
conf_level = 0.90

)

ml_2 <- ml_estimation(
x = cycles,
status = status_2,
distribution = "lognormal3"

)

Example 1 - Two-sided 95% confidence interval for probabilities ('y'):
conf_fisher_1 <- confint_fisher(

x = obs,
status = status_1,
dist_params = ml$coefficients,
dist_varcov = ml$varcov,
distribution = "weibull",
bounds = "two_sided",
conf_level = 0.95,
direction = "y"

)

Example 2 - One-sided lower/upper 90% confidence interval for quantiles ('x'):
conf_fisher_2_1 <- confint_fisher(

x = obs,
status = status_1,
dist_params = ml$coefficients,
dist_varcov = ml$varcov,
distribution = "weibull",
bounds = "lower",

delta_method 17

conf_level = 0.90,
direction = "x"

)

conf_fisher_2_2 <- confint_fisher(
x = obs,
status = status_1,
dist_params = ml$coefficients,
dist_varcov = ml$varcov,
distribution = "weibull",
bounds = "upper",
conf_level = 0.90,
direction = "x"

)

Example 3 - Two-sided 90% confidence intervals for both directions using
a three-parametric model:

conf_fisher_3_1 <- confint_fisher(
x = cycles,
status = status_2,
dist_params = ml_2$coefficients,
dist_varcov = ml_2$varcov,
distribution = "lognormal3",
bounds = "two_sided",
conf_level = 0.90,
direction = "y"

)

conf_fisher_3_2 <- confint_fisher(
x = cycles,
status = status_2,
dist_params = ml_2$coefficients,
dist_varcov = ml_2$varcov,
distribution = "lognormal3",
bounds = "two_sided",
conf_level = 0.90,
direction = "x"

)

delta_method Delta Method for Parametric Lifetime Distributions

Description

This function applies the delta method to a parametric lifetime distribution.

18 delta_method

Usage

delta_method(
x,
dist_params,
dist_varcov,
distribution = c("weibull", "lognormal", "loglogistic", "sev", "normal", "logistic",

"weibull3", "lognormal3", "loglogistic3", "exponential", "exponential2"),
direction = c("y", "x"),
p = deprecated()

)

Arguments

x A numeric vector of probabilities or quantiles. If the standard errors of quantiles
should be determined the corresponding probabilities have to be specified, and
if the standard errors of standardized quantiles (z-values) should be computed
corresponding quantiles are required.

dist_params The parameters (coefficients) returned by ml_estimation.

dist_varcov The variance-covariance-matrix (varcov) returned by ml_estimation.

distribution Supposed distribution of the random variable. Has to be in line with the specifi-
cation made in ml_estimation.

direction A character string specifying for which quantity the standard errors are calcu-
lated. "y" if x are quantiles or "x" if x are probabilities.

p [Soft-deprecated]: Use x instead.

Details

The delta method estimates the standard errors for quantities that can be written as non-linear func-
tions of ML estimators. Hence, the parameters as well as the variance-covariance matrix of these
quantities have to be estimated with maximum likelihood.

The estimated standard errors are used to calculate Fisher’s (normal approximation) confidence
intervals. For confidence bounds on the probability, standard errors of the standardized quantiles
(direction = "y") have to be computed (z-procedure) and for bounds on quantiles, standard errors
of quantiles (direction = "x") are required. For more information see confint_fisher.

Value

A numeric vector of estimated standard errors for quantiles or standardized quantiles (z-values).

References

Meeker, William Q; Escobar, Luis A., Statistical methods for reliability data, New York: Wiley
series in probability and statistics, 1998

dist_delay 19

Examples

Reliability data preparation:
data <- reliability_data(

shock,
x = distance,
status = status

)

Parameter estimation using maximum likelihood:
mle <- ml_estimation(

data,
distribution = "weibull",
conf_level = 0.95

)

Example 1 - Standard errors of standardized quantiles:
delta_y <- delta_method(

x = shock$distance,
dist_params = mle$coefficients,
dist_varcov = mle$varcov,
distribution = "weibull",
direction = "y"

)

Example 2 - Standard errors of quantiles:
delta_x <- delta_method(

x = seq(0.01, 0.99, 0.01),
dist_params = mle$coefficients,
dist_varcov = mle$varcov,
distribution = "weibull",
direction = "x"

)

dist_delay Parameter Estimation of a Delay Distribution

Description

This function models a delay (in days) random variable (e.g. in logistic, registration, report) us-
ing a supposed continuous distribution. First, the row-wise differences in days of the related date
columns are calculated and then the parameter(s) of the assumed distribution is (are) estimated with
maximum likelihood. See ’Details’ for more information.

Usage

dist_delay(...)

S3 method for class 'wt_mcs_delay_data'
dist_delay(..., x, distribution = c("lognormal", "exponential"))

20 dist_delay

Arguments

... Further arguments passed to or from other methods. Currently not used.

x A tibble with class wt_mcs_delay_data returned by mcs_delay_data.

distribution Supposed distribution of the respective delay.

Details

The distribution parameter(s) is (are) determined on the basis of complete cases, i.e. there is no NA
(row-wise) in one of the related date columns. Time differences less than or equal to zero are not
considered as well.

Value

A list with class wt_delay_estimation which contains:

• coefficients : A named vector of estimated parameter(s).

• delay : A numeric vector of element-wise computed differences in days.

• distribution : Specified distribution.

If more than one delay was considered in mcs_delay_data, the resulting output is a list with class
wt_delay_estimation_list. In this case each list element has class wt_delay_estimation and
the items listed above, are included.

Examples

MCS data preparation:
Data for delay in registration:
mcs_tbl_1 <- mcs_delay_data(

field_data,
date_1 = production_date,
date_2 = registration_date,
time = dis,
status = status,
id = vin

)

Data for delay in report:
mcs_tbl_2 <- mcs_delay_data(

field_data,
date_1 = repair_date,
date_2 = report_date,
time = dis,
status = status,
id = vin

)

Data for both delays:
mcs_tbl_both <- mcs_delay_data(

field_data,
date_1 = c(production_date, repair_date),

dist_delay.default 21

date_2 = c(registration_date, report_date),
time = dis,
status = status,
id = vin

)

Example 1 - Delay in registration:
params_delay_regist <- dist_delay(

x = mcs_tbl_1,
distribution = "lognormal"

)

Example 2 - Delay in report:
params_delay_report <- dist_delay(

x = mcs_tbl_2,
distribution = "exponential"

)

Example 3 - Delays in registration and report with same distribution:
params_delays <- dist_delay(

x = mcs_tbl_both,
distribution = "lognormal"

)

Example 4 - Delays in registration and report with different distributions:
params_delays_2 <- dist_delay(

x = mcs_tbl_both,
distribution = c("lognormal", "exponential")

)

dist_delay.default Parameter Estimation of a Delay Distribution

Description

This function models a delay (in days) random variable (e.g. in logistic, registration, report) using
a supposed continuous distribution. First, the element-wise differences in days of both vectors
date_1 and date_2 are calculated and then the parameter(s) of the assumed distribution is (are)
estimated with maximum likelihood. See ’Details’ for more information.

Usage

Default S3 method:
dist_delay(..., date_1, date_2, distribution = c("lognormal", "exponential"))

Arguments

... Further arguments passed to or from other methods. Currently not used.

22 dist_delay.default

date_1 A vector of class character or Date, in the format "yyyy-mm-dd", representing
the earlier of the two dates belonging to a particular delay. Use NA for missing
elements.
If more than one delay is to be considered, use a list where the first element is
the earlier date of the first delay, the second element is the earlier date of the
second delay, and so forth (see ’Examples’).

date_2 A vector of class character or Date in the format "yyyy-mm-dd". date_2 is
the counterpart of date_1 and is used the same as date_1, just with the later
date(s) of the particular delay(s). Use NA for missing elements.

distribution Supposed distribution of the respective delay.

Details

The distribution parameter(s) is (are) determined on the basis of complete cases, i.e. there is no
NA in one of the related vector elements c(date_1[i], date_2[i]). Time differences less than or
equal to zero are not considered as well.

Value

A list with class wt_delay_estimation which contains:

• coefficients : A named vector of estimated parameter(s).

• delay : A numeric vector of element-wise computed differences in days.

• distribution : Specified distribution.

If more than one delay was considered, the resulting output is a list with class wt_delay_estimation_list.
In this case each list element has class wt_delay_estimation and the items listed above, are in-
cluded.

See Also

dist_delay

Examples

Example 1 - Delay in registration:
params_delay_regist <- dist_delay(

date_1 = field_data$production_date,
date_2 = field_data$registration_date,
distribution = "lognormal"

)

Example 2 - Delay in report:
params_delay_report <- dist_delay(

date_1 = field_data$repair_date,
date_2 = field_data$report_date,
distribution = "exponential"

)

Example 3 - Delays in registration and report with same distribution:

dist_delay_register 23

params_delays <- dist_delay(
date_1 = list(field_data$production_date, field_data$repair_date),
date_2 = list(field_data$registration_date, field_data$report_date),
distribution = "lognormal"

)

Example 4 - Delays in registration and report with different distributions:
params_delays_2 <- dist_delay(

date_1 = list(field_data$production_date, field_data$repair_date),
date_2 = list(field_data$registration_date, field_data$report_date),
distribution = c("lognormal", "exponential")

)

dist_delay_register Parameter Estimation of the Delay in Registration Distribution

Description

[Soft-deprecated]

dist_delay_register() is no longer under active development, switching to dist_delay is recom-
mended.

Usage

dist_delay_register(date_prod, date_register, distribution = "lognormal")

Arguments

date_prod A vector of class character or Date, in the format "yyyy-mm-dd", indicating
the date of production of a unit. Use NA for missing elements.

date_register A vector of class character or Date, in the format "yyyy-mm-dd", indicating
the date of registration of a unit. Use NA for missing elements.

distribution Supposed distribution of the random variable. Only "lognormal"is implemented.

Details

This function introduces a delay random variable by calculating the time difference between the
registration and production date for the sample units and afterwards estimates the parameter(s) of a
supposed distribution, using maximum likelihood.

Value

A named vector of estimated parameters for the specified distribution.

24 dist_delay_report

Examples

date_of_production <- c("2014-07-28", "2014-02-17", "2014-07-14",
"2014-06-26", "2014-03-10", "2014-05-14",
"2014-05-06", "2014-03-07", "2014-03-09",
"2014-04-13", "2014-05-20", "2014-07-07",
"2014-01-27", "2014-01-30", "2014-03-17",
"2014-02-09", "2014-04-14", "2014-04-20",
"2014-03-13", "2014-02-23", "2014-04-03",
"2014-01-08", "2014-01-08")

date_of_registration <- c(NA, "2014-03-29", "2014-12-06", "2014-09-09",
NA, NA, "2014-06-16", NA, "2014-05-23",
"2014-05-09", "2014-05-31", NA, "2014-04-13",
NA, NA, "2014-03-12", NA, "2014-06-02",
NA, "2014-03-21", "2014-06-19", NA, NA)

params_delay_regist <- dist_delay_register(
date_prod = date_of_production,
date_register = date_of_registration,
distribution = "lognormal"

)

dist_delay_report Parameter Estimation of the Delay in Report Distribution

Description

[Soft-deprecated]
dist_delay_report()is no longer under active development, switching to dist_delay is recom-
mended.

Usage

dist_delay_report(date_repair, date_report, distribution = "lognormal")

Arguments

date_repair a vector of class character or Date, in the format "yyyy-mm-dd", indicating
the date of repair of a failed unit. Use NA for missing elements.

date_report a vector of class character or Date, in the format "yyyy-mm-dd", indicating
the date of report of a failed unit. Use NA for missing elements.

distribution Supposed distribution of the random variable. Only "lognormal"is implemented.

Details

This function introduces a delay random variable by calculating the time difference between the
report and repair date for the sample units and afterwards estimates the parameter(s) of a supposed
distribution, using maximum likelihood.

dist_mileage 25

Value

A named vector of estimated parameters for the specified distribution.

Examples

date_of_repair <- c(NA, "2014-09-15", "2015-07-04", "2015-04-10", NA,
NA, "2015-04-24", NA, "2015-04-25", "2015-04-24",
"2015-06-12", NA, "2015-05-04", NA, NA,
"2015-05-22", NA, "2015-09-17", NA, "2015-08-15",
"2015-11-26", NA, NA)

date_of_report <- c(NA, "2014-10-09", "2015-08-28", "2015-04-15", NA,
NA, "2015-05-16", NA, "2015-05-28", "2015-05-15",
"2015-07-11", NA, "2015-08-14", NA, NA,
"2015-06-05", NA, "2015-10-17", NA, "2015-08-21",
"2015-12-02", NA, NA)

params_delay_report <- dist_delay_report(
date_repair = date_of_repair,
date_report = date_of_report,
distribution = "lognormal"

)

dist_mileage Parameter Estimation of an Annual Mileage Distribution

Description

This function models a mileage random variable on an annual basis with respect to a supposed
continuous distribution. First, the distances are calculated for one year (365 days) using a linear
relationship between the distance and operating time. Second, the parameter(s) of the assumed
distribution are estimated with maximum likelihood. See ’Details’ for more information.

Usage

dist_mileage(x, ...)

S3 method for class 'wt_mcs_mileage_data'
dist_mileage(x, distribution = c("lognormal", "exponential"), ...)

Arguments

x A tibble of class wt_mcs_mileage_data returned by mcs_mileage_data.

... Further arguments passed to or from other methods. Currently not used.

distribution Supposed distribution of the annual mileage.

26 dist_mileage.default

Details

The distribution parameter(s) is (are) determined on the basis of complete cases, i.e. there is no NA
(row-wise) in one of the related columns mileage and time. Distances and operating times less
than or equal to zero are not considered as well.

Assumption of linear relationship: Imagine a component in a vehicle has endured a distance of
25000 kilometers (km) in 500 days (d), the annual distance of this unit is

25000km · (365d
500d

) = 18250km

Value

A list with class wt_mileage_estimation which contains:

• coefficients : A named vector of estimated parameter(s).

• miles_annual : A numeric vector of element-wise computed annual distances using the linear
relationship described in ’Details’.

• distribution : Specified distribution.

Examples

MCS data preparation:
mcs_tbl <- mcs_mileage_data(

field_data,
mileage = mileage,
time = dis,
status = status,
id = vin

)

Example 1 - Assuming lognormal annual mileage distribution:
params_mileage_annual <- dist_mileage(

x = mcs_tbl,
distribution = "lognormal"

)

Example 2 - Assuming exponential annual mileage distribution:
params_mileage_annual_2 <- dist_mileage(

x = mcs_tbl,
distribution = "exponential"

)

dist_mileage.default Parameter Estimation of an Annual Mileage Distribution

dist_mileage.default 27

Description

This function models a mileage random variable on an annual basis with respect to a supposed
continuous distribution. First, the distances are calculated for one year (365 days) using a linear
relationship between the distance and operating time. Second, the parameter(s) of the assumed
distribution are estimated with maximum likelihood. See ’Details’ for more information.

Usage

Default S3 method:
dist_mileage(x, time, distribution = c("lognormal", "exponential"), ...)

Arguments

x A numeric vector of distances covered. Use NA for missing elements.

time A numeric vector of operating times. Use NA for missing elements.

distribution Supposed distribution of the annual mileage.

... Further arguments passed to or from other methods. Currently not used.

Details

The distribution parameter(s) is (are) determined on the basis of complete cases, i.e. there is no NA
in one of the related vector elements c(mileage[i], time[i]). Distances and operating times less
than or equal to zero are not considered as well.

Assumption of linear relationship: Imagine a component in a vehicle has endured a distance of
25000 kilometers (km) in 500 days (d), the annual distance of this unit is

25000km · (365d
500d

) = 18250km

Value

A list with class wt_mileage_estimation which contains:

• coefficients : A named vector of estimated parameter(s).

• miles_annual : A numeric vector of element-wise computed annual distances using the linear
relationship described in ’Details’.

• distribution : Specified distribution.

See Also

dist_mileage

Examples

Example 1 - Assuming lognormal annual mileage distribution:
params_mileage_annual <- dist_mileage(

x = field_data$mileage,
time = field_data$dis,
distribution = "lognormal"

28 estimate_cdf

)

Example 2 - Assuming exponential annual mileage distribution:
params_mileage_annual_2 <- dist_mileage(

x = field_data$mileage,
time = field_data$dis,
distribution = "exponential"

)

estimate_cdf Estimation of Failure Probabilities

Description

This function applies a non-parametric method to estimate the failure probabilities of complete data
taking (multiple) right-censored observations into account.

Usage

estimate_cdf(x, ...)

S3 method for class 'wt_reliability_data'
estimate_cdf(
x,
methods = c("mr", "johnson", "kaplan", "nelson"),
options = list(),
...

)

Arguments

x A tibble with class wt_reliability_data returned by reliability_data.

... Further arguments passed to or from other methods. Currently not used.

methods One or multiple methods of "mr", "johnson", "kaplan" or "nelson" used for
the estimation of failure probabilities. See ’Details’.

options A list of named options. See ’Options’.

Details

One or multiple techniques can be used for the methods argument:

• "mr" : Method Median Ranks is used to estimate the failure probabilities of failed units with-
out considering censored items. Tied observations can be handled in three ways (See ’Op-
tions’):

– "max" : Highest observed rank is assigned to tied observations.
– "min" : Lowest observed rank is assigned to tied observations.

estimate_cdf 29

– "average" : Mean rank is assigned to tied observations.

Two formulas can be used to determine cumulative failure probabilities F(t) (See ’Options’):

– "benard" : Benard’s approximation for Median Ranks.
– "invbeta" : Exact Median Ranks using the inverse beta distribution.

• "johnson" : The Johnson method is used to estimate the failure probabilities of failed units,
taking censored units into account. Compared to complete data, correction of probabilities is
done by the computation of adjusted ranks. Two formulas can be used to determine cumulative
failure probabilities F(t) (See ’Options’):

– "benard" : Benard’s approximation for Median Ranks.
– "invbeta" : Exact Median Ranks using the inverse beta distribution.

• "kaplan" : The method of Kaplan and Meier is used to estimate the survival function S(t) with
respect to (multiple) right censored data. The complement of S(t), i.e. F(t), is returned. In
contrast to the original Kaplan-Meier estimator, one modification is made (see ’References’).

• "nelson" : The Nelson-Aalen estimator models the cumulative hazard rate function in case
of (multiple) right censored data. Equating the formal definition of the hazard rate with that
according to Nelson-Aalen results in a formula for the calculation of failure probabilities.

Value

A tibble with class wt_cdf_estimation containing the following columns:

• id : Identification for every unit.

• x : Lifetime characteristic.

• status : Binary data (0 or 1) indicating whether a unit is a right censored observation (= 0)
or a failure (= 1).

• rank : The (computed) ranks. Determined for methods "mr" and "johnson", filled with NA
for other methods or if status = 0.

• prob : Estimated failure probabilities, NA if status = 0.

• cdf_estimation_method : Specified method for the estimation of failure probabilities.

Options

Argument options is a named list of options:

Method Name Value
mr mr_method "benard" (default) or "invbeta"
mr mr_ties.method "max" (default), "min" or "average"
johnson johnson_method "benard" (default) or "invbeta"

References

NIST/SEMATECH e-Handbook of Statistical Methods, 8.2.1.5. Empirical model fitting - distribu-
tion free (Kaplan-Meier) approach, NIST SEMATECH, December 3, 2020

https://www.itl.nist.gov/div898/handbook/apr/section2/apr215.htm

30 estimate_cdf.default

Examples

Reliability data:
data <- reliability_data(

alloy,
x = cycles,
status = status

)

Example 1 - Johnson method:
prob_tbl <- estimate_cdf(

x = data,
methods = "johnson"

)

Example 2 - Multiple methods:
prob_tbl_2 <- estimate_cdf(

x = data,
methods = c("johnson", "kaplan", "nelson")

)

Example 3 - Method 'mr' with options:
prob_tbl_3 <- estimate_cdf(

x = data,
methods = "mr",
options = list(
mr_method = "invbeta",
mr_ties.method = "average"

)
)

Example 4 - Multiple methods and options:
prob_tbl_4 <- estimate_cdf(

x = data,
methods = c("mr", "johnson"),
options = list(

mr_ties.method = "max",
johnson_method = "invbeta"

)
)

estimate_cdf.default Estimation of Failure Probabilities

Description

This function applies a non-parametric method to estimate the failure probabilities of complete data
taking (multiple) right-censored observations into account.

estimate_cdf.default 31

Usage

Default S3 method:
estimate_cdf(
x,
status,
id = NULL,
method = c("mr", "johnson", "kaplan", "nelson"),
options = list(),
...

)

Arguments

x A numeric vector which consists of lifetime data. Lifetime data could be ev-
ery characteristic influencing the reliability of a product, e.g. operating time
(days/months in service), mileage (km, miles), load cycles.

status A vector of binary data (0 or 1) indicating whether unit i is a right censored
observation (= 0) or a failure (= 1).

id A vector for the identification of every unit. Default is NULL.

method Method used for the estimation of failure probabilities. See ’Details’.

options A list of named options. See ’Options’.

... Further arguments passed to or from other methods. Currently not used.

Details

The following techniques can be used for the method argument:

• "mr" : Method Median Ranks is used to estimate the failure probabilities of failed units with-
out considering censored items. Tied observations can be handled in three ways (See ’Op-
tions’):

– "max" : Highest observed rank is assigned to tied observations.
– "min" : Lowest observed rank is assigned to tied observations.
– "average" : Mean rank is assigned to tied observations.

Two formulas can be used to determine cumulative failure probabilities F(t) (See ’Options’):

– "benard" : Benard’s approximation for Median Ranks.
– "invbeta" : Exact Median Ranks using the inverse beta distribution.

• "johnson" : The Johnson method is used to estimate the failure probabilities of failed units,
taking censored units into account. Compared to complete data, correction of probabilities is
done by the computation of adjusted ranks. Two formulas can be used to determine cumulative
failure probabilities F(t) (See ’Options’):

– "benard" : Benard’s approximation for Median Ranks.
– "invbeta" : Exact Median Ranks using the inverse beta distribution.

• "kaplan" : The method of Kaplan and Meier is used to estimate the survival function S(t) with
respect to (multiple) right censored data. The complement of S(t), i.e. F(t), is returned. In
contrast to the original Kaplan-Meier estimator, one modification is made (see ’References’).

32 estimate_cdf.default

• "nelson" : The Nelson-Aalen estimator models the cumulative hazard rate function in case
of (multiple) right censored data. Equating the formal definition of the hazard rate with that
according to Nelson-Aalen results in a formula for the calculation of failure probabilities.

Value

A tibble with class wt_cdf_estimation containing the following columns:

• id : Identification for every unit.

• x : Lifetime characteristic.

• status : Binary data (0 or 1) indicating whether a unit is a right censored observation (= 0)
or a failure (= 1).

• rank : The (computed) ranks. Determined for methods "mr" and "johnson", filled with NA
for other methods or if status = 0.

• prob : Estimated failure probabilities, NA if status = 0.

• cdf_estimation_method : Specified method for the estimation of failure probabilities.

Options

Argument options is a named list of options:

Method Name Value
mr mr_method "benard" (default) or "invbeta"
mr mr_ties.method "max" (default), "min" or "average"
johnson johnson_method "benard" (default) or "invbeta"

References

NIST/SEMATECH e-Handbook of Statistical Methods, 8.2.1.5. Empirical model fitting - distribu-
tion free (Kaplan-Meier) approach, NIST SEMATECH, December 3, 2020

See Also

estimate_cdf

Examples

Vectors:
cycles <- alloy$cycles
status <- alloy$status

Example 1 - Johnson method:
prob_tbl <- estimate_cdf(

x = cycles,
status = status,
method = "johnson"

)

https://www.itl.nist.gov/div898/handbook/apr/section2/apr215.htm

field_data 33

Example 2 - Method 'mr' with options:
prob_tbl_2 <- estimate_cdf(

x = cycles,
status = status,
method = "mr",
options = list(
mr_method = "invbeta",
mr_ties.method = "average"

)
)

field_data Field Data

Description

An illustrative field dataset that contains a variety of variables commonly collected in the automotive
sector.

The dataset has complete information about failed and incomplete information about intact vehicles.
See ’Format’ and ’Details’ for further insights.

Usage

field_data

Format

A tibble with 10,684 rows and 20 variables:

vin Vehicle identification number.

dis Days in service.

mileage Distances covered, which are unknown for censored units.

status 1 for failed and 0 for censored units.

production_date Date of production.

registration_date Date of registration. Known for all failed units and for a few intact units.

repair_date The date on which the failure was repaired. It is assumed that the repair date is equal
to the date of failure occurrence.

report_date The date on which lifetime information about the failure were available.

country Delivering country.

region The region within the country of delivery. Known for registered vehicles, NA for units with
a missing registration_date.

climatic_zone Climatic zone based on "Köppen-Geiger" climate classification. Known for regis-
tered vehicles, NA for units with a missing registration_date.

34 johnson_method

climatic_subzone Climatic subzone based on "Köppen-Geiger" climate classification. Known for
registered vehicles, NA for units with a registration_date.

brand Brand of the vehicle.

vehicle_model Model of the vehicle.

engine_type Type of the engine.

engine_date Date where the engine was installed.

gear_type Type of the gear.

gear_date Date where the gear was installed.

transmission Transmission of the vehicle.

fuel Vehicle fuel.

Details

All vehicles were produced in 2014 and an analysis of the field data was made at the end of 2015.
At the date of analysis, there were 684 failed and 10,000 intact vehicles.

Censored vehicles:

For censored units the service time (dis) was computed as the difference of the date of analysis
"2015-12-31" and the registration_date.

For many units the latter date is unknown. For these, the difference of the analysis date and
production_date was used to get a rough estimation of the real service time. This uncertainty
has to be considered in the subsequent analysis (see delay in registration in the section ’Details’
of mcs_delay).

Furthermore, due to the delay in report, the computed service time could also be inaccurate. This
uncertainty should be considered as well (see delay in report in the section ’Details’ of mcs_delay).

The lifetime characteristic mileage is unknown for all censored units. If an analysis is to be
made for this lifetime characteristic, covered distances for these units have to be estimated (see
mcs_mileage).

Failed vehicles: For failed units the service time (dis) is computed as the difference of repair_date
and registration_date, which are known for all of them.

See Also

mcs_mileage_data

johnson_method Estimation of Failure Probabilities using Johnson’s Method

Description

[Soft-deprecated]
johnson_method() is no longer under active development, switching to estimate_cdf is recom-
mended.

johnson_method 35

Usage

johnson_method(x, status, id = NULL, method = c("benard", "invbeta"))

Arguments

x A numeric vector which consists of lifetime data. Lifetime data could be ev-
ery characteristic influencing the reliability of a product, e.g. operating time
(days/months in service), mileage (km, miles), load cycles.

status A vector of binary data (0 or 1) indicating whether a unit is a right censored
observation (= 0) or a failure (= 1).

id A vector for the identification of every unit. Default is NULL.

method Method for the estimation of the cdf. Can be "benard" (default) or "invbeta".

Details

This non-parametric approach is used to estimate the failure probabilities in terms of uncensored
or (multiple) right censored data. Compared to complete data the correction is done by calculating
adjusted ranks which takes non-defective units into account.

Value

A tibble containing the following columns:

• id : Identification for every unit.

• x : Lifetime characteristic.

• status : Binary data (0 or 1) indicating whether a unit is a right censored observation (= 0)
or a failure (= 1).

• rank : Adjusted ranks, NA if status = 0.

• prob : Estimated failure probabilities, NA if status = 0.

• cdf_estimation_method : Specified method for the estimation of failure probabilities (al-
ways ’johnson’).

Examples

Vectors:
obs <- seq(10000, 100000, 10000)
state <- c(0, 1, 1, 0, 0, 0, 1, 0, 1, 0)
uic <- c("3435", "1203", "958X", "XX71", "abcd", "tz46",

"fl29", "AX23", "Uy12", "kl1a")

Example 1 - Johnson method for intact and failed units:
tbl_john <- johnson_method(

x = obs,
status = state,
id = uic

)

Example 2 - Johnson's method works also if only defective units are considered:

36 kaplan_method

tbl_john_2 <- johnson_method(
x = obs,
status = rep(1, length(obs))

)

kaplan_method Estimation of Failure Probabilities using the Kaplan-Meier Estimator

Description

[Soft-deprecated]
kaplan_method() is no longer under active development, switching to estimate_cdf is recom-
mended.

Usage

kaplan_method(x, status, id = NULL)

Arguments

x A numeric vector which consists of lifetime data. Lifetime data could be ev-
ery characteristic influencing the reliability of a product, e.g. operating time
(days/months in service), mileage (km, miles), load cycles.

status A vector of binary data (0 or 1) indicating whether a unit is a right censored
observation (= 0) or a failure (= 1).

id A vector for the identification of every unit. Default is NULL.

Details

Whereas the non-parametric Kaplan-Meier estimator is used to estimate the survival function S(t) in
terms of (multiple) right censored data, the complement is an estimate of the cumulative distribution
function F(t). One modification is made in contrast to the original Kaplan-Meier estimator (see
’References’).

Value

A tibble containing the following columns:

• id : Identification for every unit.

• x : Lifetime characteristic.

• status : Binary data (0 or 1) indicating whether a unit is a right censored observation (= 0)
or a failure (= 1).

• rank : Filled with NA.

• prob : Estimated failure probabilities, NA if status = 0.

• cdf_estimation_method : Specified method for the estimation of failure probabilities (al-
ways ’kaplan’).

loglik_function 37

References

NIST/SEMATECH e-Handbook of Statistical Methods, 8.2.1.5. Empirical model fitting - distribu-
tion free (Kaplan-Meier) approach, NIST SEMATECH, December 3, 2020

Examples

Vectors:
obs <- seq(10000, 100000, 10000)
state <- c(0, 1, 1, 0, 0, 0, 1, 0, 1, 0)
state_2 <- c(0, 1, 1, 0, 0, 0, 1, 0, 0, 1)
uic <- c("3435", "1203", "958X", "XX71", "abcd", "tz46",

"fl29", "AX23","Uy12", "kl1a")

Example 1 - Observation with highest characteristic is an intact unit:
tbl_kap <- kaplan_method(

x = obs,
status = state,
id = uic

)

Example 2 - Observation with highest characteristic is a defective unit:
tbl_kap_2 <- kaplan_method(

x = obs,
status = state_2

)

loglik_function Log-Likelihood Function for Parametric Lifetime Distributions

Description

This function computes the log-likelihood value with respect to a given set of parameters. In terms
of Maximum Likelihood Estimation this function can be optimized (optim) to estimate the parame-
ters and variance-covariance matrix of the parameters.

Usage

loglik_function(x, ...)

S3 method for class 'wt_reliability_data'
loglik_function(
x,
wts = rep(1, nrow(x)),
dist_params,
distribution = c("weibull", "lognormal", "loglogistic", "sev", "normal", "logistic",

"weibull3", "lognormal3", "loglogistic3", "exponential", "exponential2"),
...

)

https://www.itl.nist.gov/div898/handbook/apr/section2/apr215.htm

38 loglik_function

Arguments

x A tibble with class wt_reliability_data returned by reliability_data.

... Further arguments passed to or from other methods. Currently not used.

wts Optional vector of case weights. The length of wts must be equal to the number
of observations in x.

dist_params A vector of parameters. An overview of the distribution-specific parameters can
be found in section ’Distributions’.

distribution Supposed distribution of the random variable.

Value

Returns the log-likelihood value for the parameters in dist_params given the data.

Distributions

The following table summarizes the available distributions and their parameters

• location parameter µ,

• scale parameter σ or θ and

• threshold parameter γ.

The order within dist_params is given in the table header.

distribution dist_params[1] dist_params[2] dist_params[3]
"sev" µ σ -
"weibull" µ σ -
"weibull3" µ σ γ
"normal" µ σ -
"lognormal" µ σ -
"lognormal3" µ σ γ
"logistic" µ σ -
"loglogistic" µ σ -
"loglogistic3" µ σ γ
"exponential" θ - -
"exponential2" θ γ -

References

Meeker, William Q; Escobar, Luis A., Statistical methods for reliability data, New York: Wiley
series in probability and statistics, 1998

Examples

Reliability data preparation:
data <- reliability_data(

alloy,
x = cycles,

loglik_function.default 39

status = status
)

Example 1 - Evaluating Log-Likelihood function of two-parametric weibull:
loglik_weib <- loglik_function(

x = data,
dist_params = c(5.29, 0.33),
distribution = "weibull"

)

Example 2 - Evaluating Log-Likelihood function of three-parametric weibull:
loglik_weib3 <- loglik_function(

x = data,
dist_params = c(4.54, 0.76, 92.99),
distribution = "weibull3"

)

loglik_function.default

Log-Likelihood Function for Parametric Lifetime Distributions

Description

This function computes the log-likelihood value with respect to a given set of parameters. In terms
of Maximum Likelihood Estimation this function can be optimized (optim) to estimate the parame-
ters and variance-covariance matrix of the parameters.

Usage

Default S3 method:
loglik_function(
x,
status,
wts = rep(1, length(x)),
dist_params,
distribution = c("weibull", "lognormal", "loglogistic", "sev", "normal", "logistic",

"weibull3", "lognormal3", "loglogistic3", "exponential", "exponential2"),
...

)

Arguments

x A numeric vector which consists of lifetime data. Lifetime data could be ev-
ery characteristic influencing the reliability of a product, e.g. operating time
(days/months in service), mileage (km, miles), load cycles.

status A vector of binary data (0 or 1) indicating whether a unit is a right censored
observation (= 0) or a failure (= 1).

40 loglik_function.default

wts Optional vector of case weights. The length of wts must be equal to the number
of observations in x.

dist_params A vector of parameters. An overview of the distribution-specific parameters can
be found in section ’Distributions’.

distribution Supposed distribution of the random variable.

... Further arguments passed to or from other methods. Currently not used.

Value

Returns the log-likelihood value for the parameters in dist_params given the data.

Distributions

The following table summarizes the available distributions and their parameters

• location parameter µ,

• scale parameter σ or θ and

• threshold parameter γ.

The order within dist_params is given in the table header.

distribution dist_params[1] dist_params[2] dist_params[3]
"sev" µ σ -
"weibull" µ σ -
"weibull3" µ σ γ
"normal" µ σ -
"lognormal" µ σ -
"lognormal3" µ σ γ
"logistic" µ σ -
"loglogistic" µ σ -
"loglogistic3" µ σ γ
"exponential" θ - -
"exponential2" θ γ -

References

Meeker, William Q; Escobar, Luis A., Statistical methods for reliability data, New York: Wiley
series in probability and statistics, 1998

See Also

loglik_function

loglik_profiling 41

Examples

Vectors:
cycles <- alloy$cycles
status <- alloy$status

Example 1 - Evaluating Log-Likelihood function of two-parametric weibull:
loglik_weib <- loglik_function(

x = cycles,
status = status,
dist_params = c(5.29, 0.33),
distribution = "weibull"

)

Example 2 - Evaluating Log-Likelihood function of three-parametric weibull:
loglik_weib3 <- loglik_function(

x = cycles,
status = status,
dist_params = c(4.54, 0.76, 92.99),
distribution = "weibull3"

)

loglik_profiling Log-Likelihood Profile Function for Parametric Lifetime Distributions
with Threshold

Description

This function evaluates the log-likelihood with respect to a given threshold parameter of a paramet-
ric lifetime distribution. In terms of Maximum Likelihood Estimation this function can be optimized
(optim) to estimate the threshold parameter.

Usage

loglik_profiling(x, ...)

S3 method for class 'wt_reliability_data'
loglik_profiling(
x,
wts = rep(1, nrow(x)),
thres,
distribution = c("weibull3", "lognormal3", "loglogistic3", "exponential2"),
...

)

Arguments

x A tibble with class wt_reliability_data returned by reliability_data.

42 loglik_profiling

... Further arguments passed to or from other methods. Currently not used.

wts Optional vector of case weights. The length of wts must be equal to the number
of observations in x.

thres A numeric value for the threshold parameter.

distribution Supposed parametric distribution of the random variable.

Value

Returns the log-likelihood value for the threshold parameter thres given the data.

References

Meeker, William Q; Escobar, Luis A., Statistical methods for reliability data, New York: Wiley
series in probability and statistics, 1998

Examples

Reliability data preparation:
data <- reliability_data(

alloy,
x = cycles,
status = status

)

Determining the optimal loglikelihood value:
Range of threshold parameter must be smaller than the first failure:
threshold <- seq(

0,
min(data$x[data$status == 1]) - 0.1,
length.out = 50

)

loglikelihood value with respect to threshold values:
profile_logL <- loglik_profiling(

x = data,
thres = threshold,
distribution = "weibull3"

)

Threshold value (among the candidates) that maximizes the
loglikelihood:
threshold[which.max(profile_logL)]

plot:
plot(

threshold,
profile_logL,
type = "l"

)
abline(

v = threshold[which.max(profile_logL)],

loglik_profiling.default 43

h = max(profile_logL),
col = "red"

)

loglik_profiling.default

Log-Likelihood Profile Function for Parametric Lifetime Distributions
with Threshold

Description

This function evaluates the log-likelihood with respect to a given threshold parameter of a paramet-
ric lifetime distribution. In terms of Maximum Likelihood Estimation this function can be optimized
(optim) to estimate the threshold parameter.

Usage

Default S3 method:
loglik_profiling(
x,
status,
wts = rep(1, length(x)),
thres,
distribution = c("weibull3", "lognormal3", "loglogistic3", "exponential2"),
...

)

Arguments

x A numeric vector which consists of lifetime data. Lifetime data could be ev-
ery characteristic influencing the reliability of a product, e.g. operating time
(days/months in service), mileage (km, miles), load cycles.

status A vector of binary data (0 or 1) indicating whether a unit is a right censored
observation (= 0) or a failure (= 1).

wts Optional vector of case weights. The length of wts must be equal to the number
of observations in x.

thres A numeric value for the threshold parameter.

distribution Supposed parametric distribution of the random variable.

... Further arguments passed to or from other methods. Currently not used.

Value

Returns the log-likelihood value for the threshold parameter thres given the data.

44 loglik_profiling.default

References

Meeker, William Q; Escobar, Luis A., Statistical methods for reliability data, New York: Wiley
series in probability and statistics, 1998

See Also

loglik_profiling

Examples

Vectors:
cycles <- alloy$cycles
status <- alloy$status

Determining the optimal loglikelihood value:
Range of threshold parameter must be smaller than the first failure:
threshold <- seq(

0,
min(cycles[status == 1]) - 0.1,
length.out = 50

)

loglikelihood value with respect to threshold values:
profile_logL <- loglik_profiling(

x = cycles,
status = status,
thres = threshold,
distribution = "weibull3"

)

Threshold value (among the candidates) that maximizes the
loglikelihood:
threshold[which.max(profile_logL)]

plot:
plot(

threshold,
profile_logL,
type = "l"

)
abline(

v = threshold[which.max(profile_logL)],
h = max(profile_logL),
col = "red"

)

mcs_delay 45

mcs_delay Adjustment of Operating Times by Delays using a Monte Carlo Ap-
proach

Description

In general, the amount of available information about units in the field is very different. During
the warranty period, there are only a few cases with complete data (mainly failed units) but lots of
cases with incomplete data (usually censored units). As a result, the operating time of units with
incomplete information is often inaccurate and must be adjusted by delays.

This function reduces the operating times of incomplete observations by simulated delays (in days).
A unit is considered as incomplete if the later of the related dates is unknown. See ’Details’ for
some practical examples.

Random delay numbers are drawn from the distribution determined by complete cases (described
in ’Details’ of dist_delay).

Usage

mcs_delay(...)

S3 method for class 'wt_mcs_delay_data'
mcs_delay(..., x, distribution = c("lognormal", "exponential"))

Arguments

... Further arguments passed to or from other methods. Currently not used.

x A tibble with class wt_mcs_delay_data returned by mcs_delay_data.

distribution Supposed distribution of the respective delay.

Details

In field data analysis time-dependent characteristics (e.g. time in service) are often imprecisely
recorded. These inaccuracies are caused by unconsidered delays.

For a better understanding of the MCS application in the context of field data, two cases are de-
scribed below.

• Delay in registration: It is common that a supplier, which provides parts to the manufacturing
industry does not know when the unit, in which its parts are installed, were put in service (due
to unknown registration or sales date (date_2)). Without taking the described delay into
account, the time in service of the failed units would be the difference between the repair date
and the production date (date_1) and for intact units the difference between the present date
and the production date. But the real operating times are (much) shorter, since the stress on
the components have not started until the whole systems were put in service. Hence, units
with incomplete data (missing date_2) must be reduced by the delays.

46 mcs_delay

• Delay in report:: Authorized repairers often do not immediately notify the manufacturer or
OEM of repairs that were made during the warranty period, but instead pass the information
about these repairs in collected forms e.g. weekly, monthly or quarterly. The resulting time
difference between the reporting (date_2) of the repair in the guarantee database and the ac-
tual repair date (date_1), which is often assumed to be the failure date, is called the reporting
delay. For a given date where the analysis is made there could be units which had a failure but
the failure isn’t reported and therefore they are treated as censored units. In order to take this
into account and according to the principle of equal opportunities, the lifetime of units with
missing report date (date_2[i] = NA) is reduced by simulated reporting delays.

Value

A list with class wt_mcs_delay containing the following elements:

• data : A tibble returned by mcs_delay_data where two modifications has been made:

– If the column status exists, the tibble has additional classes wt_mcs_data and wt_reliability_data.
Otherwise, the tibble only has the additional class wt_mcs_data (which is not supported
by estimate_cdf).

– The column time is renamed to x (to be in accordance with reliability_data) and contains
the adjusted operating times for incomplete observations and input operating times for
the complete observations.

• sim_data : A tibble with column sim_delay that holds the simulated delay-specific num-
bers for incomplete cases and 0 for complete cases. If more than one delay was considered
multiple columns with names sim_delay_1, sim_delay_2, ..., sim_delay_i and correspond-
ing delay-specific random numbers are presented.

• model_estimation : A list returned by dist_delay.

References

Verband der Automobilindustrie e.V. (VDA); Qualitätsmanagement in der Automobilindustrie. Zu-
verlässigkeitssicherung bei Automobilherstellern und Lieferanten. Zuverlässigkeits-Methoden und
-Hilfsmittel.; 4th Edition, 2016, ISSN:0943-9412

See Also

dist_delay for the determination of a parametric delay distribution and estimate_cdf for the estima-
tion of failure probabilities.

Examples

MCS data preparation:
Data for delay in registration:
mcs_tbl_1 <- mcs_delay_data(

field_data,
date_1 = production_date,
date_2 = registration_date,
time = dis,
status = status,
id = vin

mcs_delay 47

)

Data for delay in report:
mcs_tbl_2 <- mcs_delay_data(

field_data,
date_1 = repair_date,
date_2 = report_date,
time = dis,
status = status,
id = vin

)

Data for both delays:
mcs_tbl_both <- mcs_delay_data(

field_data,
date_1 = c(production_date, repair_date),
date_2 = c(registration_date, report_date),
time = dis,
status = status,
id = vin

)

Example 1 - MCS for delay in registration:
mcs_regist <- mcs_delay(

x = mcs_tbl_1,
distribution = "lognormal"

)

Example 2 - MCS for delay in report:
mcs_report <- mcs_delay(

x = mcs_tbl_2,
distribution = "exponential"

)

Example 3 - Reproducibility of random numbers:
set.seed(1234)
mcs_report_reproduce <- mcs_delay(

x = mcs_tbl_2,
distribution = "exponential"

)

Example 4 - MCS for delays in registration and report with same distribution:
mcs_delays <- mcs_delay(

x = mcs_tbl_both,
distribution = "lognormal"

)

Example 5 - MCS for delays in registration and report with different distributions:
Assuming lognormal registration and exponential reporting delays.
mcs_delays_2 <- mcs_delay(

x = mcs_tbl_both,
distribution = c("lognormal", "exponential")

)

48 mcs_delay.default

mcs_delay.default Adjustment of Operating Times by Delays using a Monte Carlo Ap-
proach

Description

In general, the amount of available information about units in the field is very different. During
the warranty period, there are only a few cases with complete data (mainly failed units) but lots of
cases with incomplete data (usually censored units). As a result, the operating time of units with
incomplete information is often inaccurate and must be adjusted by delays.

This function reduces the operating times of incomplete observations by simulated delays (in days).
A unit is considered as incomplete if the later of the related dates is unknown. See ’Details’ for
some practical examples.

Random delay numbers are drawn from the distribution determined by complete cases (described
in ’Details’ of dist_delay).

Usage

Default S3 method:
mcs_delay(
...,
date_1,
date_2,
time,
status = NULL,
id = paste0("ID", seq_len(length(time))),
distribution = c("lognormal", "exponential")

)

Arguments

... Further arguments passed to or from other methods. Currently not used.

date_1 A vector of class character or Date, in the format "yyyy-mm-dd", representing
the earlier of the two dates belonging to a particular delay. Use NA for missing
elements.
If more than one delay is to be considered, use a list where the first element is
the earlier date of the first delay, the second element is the earlier date of the
second delay, and so forth (see ’Examples’).

date_2 A vector of class character or Date in the format "yyyy-mm-dd". date_2 is
the counterpart of date_1 and is used the same as date_1, just with the later
date(s) of the particular delay(s). Use NA for missing elements.

time Operating times. Use NA for missing elements.

mcs_delay.default 49

status Optional argument. If used, it must contain binary data (0 or 1) indicating
whether a unit is a right censored observation (= 0) or a failure (= 1).
If status is provided, class wt_reliability_data is assigned to the output of
mcs_delay, which enables the direct application of estimate_cdf on operating
times.

id Identification of every unit.
distribution Supposed distribution of the respective delay.

Details

In field data analysis time-dependent characteristics (e.g. time in service) are often imprecisely
recorded. These inaccuracies are caused by unconsidered delays.
For a better understanding of the MCS application in the context of field data, two cases are de-
scribed below.

• Delay in registration: It is common that a supplier, which provides parts to the manufacturing
industry does not know when the unit, in which its parts are installed, were put in service (due
to unknown registration or sales date (date_2)). Without taking the described delay into
account, the time in service of the failed units would be the difference between the repair date
and the production date (date_1) and for intact units the difference between the present date
and the production date. But the real operating times are (much) shorter, since the stress on
the components have not started until the whole systems were put in service. Hence, units
with incomplete data (missing date_2) must be reduced by the delays.

• Delay in report:: Authorized repairers often do not immediately notify the manufacturer or
OEM of repairs that were made during the warranty period, but instead pass the information
about these repairs in collected forms e.g. weekly, monthly or quarterly. The resulting time
difference between the reporting (date_2) of the repair in the guarantee database and the ac-
tual repair date (date_1), which is often assumed to be the failure date, is called the reporting
delay. For a given date where the analysis is made there could be units which had a failure but
the failure isn’t reported and therefore they are treated as censored units. In order to take this
into account and according to the principle of equal opportunities, the lifetime of units with
missing report date (date_2[i] = NA) is reduced by simulated reporting delays.

Value

A list with class wt_mcs_delay containing the following elements:

• data : A tibble returned by mcs_delay_data where two modifications has been made:
– If the column status exists, the tibble has additional classes wt_mcs_data and wt_reliability_data.

Otherwise, the tibble only has the additional class wt_mcs_data (which is not supported
by estimate_cdf).

– The column time is renamed to x (to be in accordance with reliability_data) and contains
the adjusted operating times for incomplete observations and input operating times for
the complete observations.

• sim_data : A tibble with column sim_delay that holds the simulated delay-specific num-
bers for incomplete cases and 0 for complete cases. If more than one delay was considered
multiple columns with names sim_delay_1, sim_delay_2, ..., sim_delay_i and correspond-
ing delay-specific random numbers are presented.

• model_estimation : A list returned by dist_delay.

50 mcs_delay.default

References

Verband der Automobilindustrie e.V. (VDA); Qualitätsmanagement in der Automobilindustrie. Zu-
verlässigkeitssicherung bei Automobilherstellern und Lieferanten. Zuverlässigkeits-Methoden und
-Hilfsmittel.; 4th Edition, 2016, ISSN:0943-9412

See Also

dist_delay for the determination of a parametric delay distribution and estimate_cdf for the estima-
tion of failure probabilities.

Examples

Example 1 - MCS for delay in registration:
mcs_regist <- mcs_delay(

date_1 = field_data$production_date,
date_2 = field_data$registration_date,
time = field_data$dis,
status = field_data$status,
distribution = "lognormal"

)

Example 2 - MCS for delay in report:
mcs_report <- mcs_delay(

date_1 = field_data$repair_date,
date_2 = field_data$report_date,
time = field_data$dis,
status = field_data$status,
distribution = "exponential"

)

Example 3 - Reproducibility of random numbers:
set.seed(1234)
mcs_report_reproduce <- mcs_delay(

date_1 = field_data$repair_date,
date_2 = field_data$report_date,
time = field_data$dis,
status = field_data$status,
distribution = "exponential"

)

Example 4 - MCS for delays in registration and report with same distribution:
mcs_delays <- mcs_delay(

date_1 = list(field_data$production_date, field_data$repair_date),
date_2 = list(field_data$registration_date, field_data$report_date),
time = field_data$dis,
status = field_data$status,
distribution = "lognormal"

)

Example 5 - MCS for delays in registration and report with different distributions:
Assuming lognormal registration and exponential reporting delays.
mcs_delays_2 <- mcs_delay(

mcs_delays 51

date_1 = list(field_data$production_date, field_data$repair_date),
date_2 = list(field_data$registration_date, field_data$report_date),
time = field_data$dis,
status = field_data$status,
distribution = c("lognormal", "exponential")

)

mcs_delays Adjustment of Operating Times by Delays using a Monte Carlo Ap-
proach

Description

[Soft-deprecated]
mcs_delays() is no longer under active development, switching to mcs_delay is recommended.

Usage

mcs_delays(
date_prod,
date_register,
date_repair,
date_report,
time,
status,
distribution = "lognormal",
details = FALSE

)

Arguments

date_prod A vector of class character or Date, in the format "yyyy-mm-dd", indicating
the date of production of a unit. Use NA for missing elements.

date_register A vector of class character or Date, in the format "yyyy-mm-dd", indicating
the date of registration of a unit. Use NA for missing elements.

date_repair a vector of class character or Date, in the format "yyyy-mm-dd", indicating
the date of repair of a failed unit. Use NA for missing elements.

date_report a vector of class character or Date, in the format "yyyy-mm-dd", indicating
the date of report of a failed unit. Use NA for missing elements.

time A numeric vector of operating times.

status A vector of binary data (0 or 1) indicating whether unit i is a right censored
observation (= 0) or a failure (= 1).

distribution Supposed distribution of the random variable. Only "lognormal" is imple-
mented.

52 mcs_delays

details A logical. If FALSE the output consists of a vector with corrected operating times
for the censored units and the input operating times for the failed units. If TRUE
the output consists of a detailed list, i.e the same vector as described before,
simulated random numbers and estimated distribution parameters.

Details

This function is a wrapper that combines both, mcs_delay_register and mcs_delay_report functions
for the adjustment of operating times of censored units.

Value

A numerical vector of corrected operating times for the censored units and the input operating times
for the failed units if details = FALSE. If details = TRUE the output is a list which consists of the
following elements:

• time : A numeric vector of corrected operating times for the censored observations and input
operating times for failed units.

• x_sim_regist : Simulated random numbers of specified distribution with estimated parame-
ters for delay in registration. The length of x_sim_regist is equal to the number of censored
observations.

• x_sim_report : Simulated random numbers of specified distribution with estimated param-
eters for delay in report. The length of x_sim_report is equal to the number of censored
observations.

• coefficients_regist : Estimated coefficients of supposed distribution for delay in registra-
tion.

• coefficients_report : Estimated coefficients of supposed distribution for delay in report

Examples

date_of_production <- c("2014-07-28", "2014-02-17", "2014-07-14",
"2014-06-26", "2014-03-10", "2014-05-14",
"2014-05-06", "2014-03-07", "2014-03-09",
"2014-04-13", "2014-05-20", "2014-07-07",
"2014-01-27", "2014-01-30", "2014-03-17",
"2014-02-09", "2014-04-14", "2014-04-20",
"2014-03-13", "2014-02-23", "2014-04-03",
"2014-01-08", "2014-01-08")

date_of_registration <- c("2014-08-17", "2014-03-29", "2014-12-06",
"2014-09-09", "2014-05-14", "2014-07-01",
"2014-06-16", "2014-04-03", "2014-05-23",
"2014-05-09", "2014-05-31", "2014-08-12",
"2014-04-13", "2014-02-15", "2014-07-07",
"2014-03-12", "2014-05-27", "2014-06-02",
"2014-05-20", "2014-03-21", "2014-06-19",
"2014-02-12", "2014-03-27")

date_of_repair <- c(NA, "2014-09-15", "2015-07-04", "2015-04-10", NA,
NA, "2015-04-24", NA, "2015-04-25", "2015-04-24",
"2015-06-12", NA, "2015-05-04", NA, NA,
"2015-05-22", NA, "2015-09-17", NA, "2015-08-15",

mcs_delay_data 53

"2015-11-26", NA, NA)

date_of_report <- c(NA, "2014-10-09", "2015-08-28", "2015-04-15", NA,
NA, "2015-05-16", NA, "2015-05-28", "2015-05-15",
"2015-07-11", NA, "2015-08-14", NA, NA,
"2015-06-05", NA, "2015-10-17", NA, "2015-08-21",
"2015-12-02", NA, NA)

op_time <- rep(1000, length(date_of_repair))
status <- c(0, 1, 1, 1, 0, 0, 1, 0, 1, 1, 1, 0, 1, 0, 0, 1, 0, 1, 0, 1, 1, 0, 0)

Example 1 - Simplified vector output:
x_corrected <- mcs_delays(

date_prod = date_of_production,
date_register = date_of_registration,
date_repair = date_of_repair,
date_report = date_of_report,
time = op_time,
status = status,
distribution = "lognormal",
details = FALSE

)

Example 2 - Detailed list output:
list_detail <- mcs_delays(

date_prod = date_of_production,
date_register = date_of_registration,
date_repair = date_of_repair,
date_report = date_of_report,
time = op_time,
status = status,
distribution = "lognormal",
details = TRUE

)

mcs_delay_data MCS Delay Data

Description

Create consistent mcs_delay_data based on an existing data.frame (preferred) or on multiple
equal length vectors.

Usage

mcs_delay_data(
data = NULL,
date_1,
date_2,

54 mcs_delay_data

time,
status = NULL,
id = NULL,
.keep_all = FALSE

)

Arguments

data Either NULL or a data.frame. If data is NULL, date_1, date_2, time, status
and id must be vectors containing the data. Otherwise date_1, date_2, time,
status and id can be either column names or column positions.

date_1 A date of class character or Date in the format "yyyy-mm-dd", representing
the earlier of the two dates belonging to a particular delay. Use NA for missing
elements.
If more than one delay is to be considered, use a list for the vector-based ap-
proach and a vector of column names or positions for the data-based approach.
The first element is the earlier date of the first delay, the second element is the
earlier date of the second delay, and so forth (see ’Examples’).

date_2 A date of class character or Date in the format "yyyy-mm-dd". date_2 is the
counterpart of date_1 and is used the same as date_1, just with the later date(s)
of the particular delay(s). Use NA for missing elements.

time Operating times. Use NA for missing elements.
status Optional argument. If used, it must contain binary data (0 or 1) indicating

whether a unit is a right censored observation (= 0) or a failure (= 1).
If status is provided, class wt_reliability_data is assigned to the output of
mcs_delay, which enables the direct application of estimate_cdf on operating
times.

id Identification of every unit.
.keep_all If TRUE keep remaining variables in data.

Value

A tibble with class wt_mcs_delay_data that is formed for the downstream Monte Carlo method
mcs_delay. It contains the following columns (if .keep_all = FALSE):

• Column(s) preserving the input of date_1. For the vector-based approach with unnamed
input, column name(s) is (are) date_1 (date_1.1, date_1.2, ..., date_1.i).

• Column(s) preserving the input of date_2. For the vector-based approach with unnamed
input, column name(s) is (are) date_2 (date_2.1, date_2.2, ..., date_2.i).

• time : Input operating times.
• status (optional) :

– If is.null(status) column status does not exist.
– If status is provided the column contains the entered binary data (0 or 1).

• id : Identification for every unit.

If .keep_all = TRUE, the remaining columns of data are also preserved.
The attributes mcs_start_dates and mcs_end_dates hold the name(s) of the column(s) that pre-
serve the input of date_1 and date_2.

mcs_delay_data 55

See Also

dist_delay for the determination of a parametric delay distribution and mcs_delay for the Monte
Carlo method with respect to delays.

Examples

Example 1 - Based on an existing data.frame/tibble and column names:
mcs_tbl <- mcs_delay_data(

data = field_data,
date_1 = production_date,
date_2 = registration_date,
time = dis,
status = status

)

Example 2 - Based on an existing data.frame/tibble and column positions:
mcs_tbl_2 <- mcs_delay_data(

data = field_data,
date_1 = 7,
date_2 = 8,
time = 2,
id = 1

)

Example 3 - Keep all variables of the tibble/data.frame entered to argument data:
mcs_tbl_3 <- mcs_delay_data(

data = field_data,
date_1 = production_date,
date_2 = registration_date,
time = dis,
status = status,
id = vin,
.keep_all = TRUE

)

Example 4 - For multiple delays (data-based):
mcs_tbl_4 <- mcs_delay_data(

data = field_data,
date_1 = c(production_date, repair_date),
date_2 = c(registration_date, report_date),
time = dis,
status = status

)

Example 5 - Based on vectors:
mcs_tbl_5 <- mcs_delay_data(

date_1 = field_data$production_date,
date_2 = field_data$registration_date,
time = field_data$dis,
status = field_data$status,
id = field_data$vin

)

56 mcs_delay_register

Example 6 - For multiple delays (vector-based):
mcs_tbl_6 <- mcs_delay_data(

date_1 = list(field_data$production_date, field_data$repair_date),
date_2 = list(field_data$registration_date, field_data$report_date),
time = field_data$dis,
status = field_data$status,
id = field_data$vin

)

Example 7 - For multiple delays (vector-based with named dates):
mcs_tbl_7 <- mcs_delay_data(

date_1 = list(d11 = field_data$production_date, d12 = field_data$repair_date),
date_2 = list(d21 = field_data$registration_date, d22 = field_data$report_date),
time = field_data$dis,
status = field_data$status,
id = field_data$vin

)

mcs_delay_register Adjustment of Operating Times by Delays in Registration using a
Monte Carlo Approach

Description

[Soft-deprecated]
mcs_delay_register() is no longer under active development, switching to mcs_delay is recom-
mended.

Usage

mcs_delay_register(
date_prod,
date_register,
time,
status,
distribution = "lognormal",
details = FALSE

)

Arguments

date_prod A vector of class character or Date, in the format "yyyy-mm-dd", indicating
the date of production of a unit. Use NA for missing elements.

date_register A vector of class character or Date, in the format "yyyy-mm-dd", indicating
the date of registration of a unit. Use NA for missing elements.

time A numeric vector of operating times.

mcs_delay_register 57

status A vector of binary data (0 or 1) indicating whether unit i is a right censored
observation (= 0) or a failure (= 1).

distribution Supposed distribution of the random variable. Only "lognormal" is imple-
mented.

details A logical. If FALSE the output consists of a vector with corrected operating times
for the censored units and the input operating times for the failed units. If TRUE
the output consists of a detailed list, i.e the same vector as described before,
simulated random numbers and estimated distribution parameters.

Details

In general the amount of information about units in the field, that have not failed yet, are rare. For
example it is common that a supplier, who provides parts to the automotive industry does not know
when a vehicle was put in service and therefore does not know the exact operating time of the sup-
plied parts. This function uses a Monte Carlo approach for simulating the operating times of (mul-
tiple) right censored observations, taking account of registering delays. The simulation is based on
the distribution of operating times that were calculated from complete data (see dist_delay_register).

Value

A numeric vector of corrected operating times for the censored units and the input operating times
for the failed units if details = FALSE. If details = TRUE the output is a list which consists of the
following elements:

• time : Numeric vector of corrected operating times for the censored observations and input
operating times for failed units.

• x_sim : Simulated random numbers of specified distribution with estimated parameters. The
length of x_sim is equal to the number of censored observations.

• coefficients : Estimated coefficients of supposed distribution.

Examples

date_of_production <- c("2014-07-28", "2014-02-17", "2014-07-14",
"2014-06-26", "2014-03-10", "2014-05-14",
"2014-05-06", "2014-03-07", "2014-03-09",
"2014-04-13", "2014-05-20", "2014-07-07",
"2014-01-27", "2014-01-30", "2014-03-17",
"2014-02-09", "2014-04-14", "2014-04-20",
"2014-03-13", "2014-02-23", "2014-04-03",
"2014-01-08", "2014-01-08")

date_of_registration <- c(NA, "2014-03-29", "2014-12-06", "2014-09-09",
NA, NA, "2014-06-16", NA, "2014-05-23",
"2014-05-09", "2014-05-31", NA, "2014-04-13",
NA, NA, "2014-03-12", NA, "2014-06-02",
NA, "2014-03-21", "2014-06-19", NA, NA)

op_time <- rep(1000, length(date_of_production))
status <- c(0, 1, 1, 1, 0, 0, 1, 0, 1, 1, 1, 0, 1, 0, 0, 1, 0, 1, 0, 1, 1, 0, 0)

Example 1 - Simplified vector output:

58 mcs_delay_report

x_corrected <- mcs_delay_register(
date_prod = date_of_production,
date_register = date_of_registration,
time = op_time,
status = status,
distribution = "lognormal",
details = FALSE

)

Example 2 - Detailed list output:
list_detail <- mcs_delay_register(

date_prod = date_of_production,
date_register = date_of_registration,
time = op_time,
status = status,
distribution = "lognormal",
details = TRUE

)

mcs_delay_report Adjustment of Operating Times by Delays in Report using a Monte
Carlo Approach

Description

[Soft-deprecated]
mcs_delay_report() is no longer under active development, switching to mcs_delay is recom-
mended.

Usage

mcs_delay_report(
date_repair,
date_report,
time,
status,
distribution = "lognormal",
details = FALSE

)

Arguments

date_repair a vector of class character or Date, in the format "yyyy-mm-dd", indicating
the date of repair of a failed unit. Use NA for missing elements.

date_report a vector of class character or Date, in the format "yyyy-mm-dd", indicating
the date of report of a failed unit. Use NA for missing elements.

time A numeric vector of operating times.

mcs_delay_report 59

status A vector of binary data (0 or 1) indicating whether unit i is a right censored
observation (= 0) or a failure (= 1).

distribution Supposed distribution of the random variable. Only "lognormal"is implemented.

details A logical. If FALSE the output consists of a vector with corrected operating times
for the censored units and the input operating times for the failed units. If TRUE
the output consists of a detailed list, i.e the same vector as described before,
simulated random numbers and estimated distribution parameters.

Details

The delay in report describes the time between the occurrence of a damage and the registration
in the warranty database. For a given date where the analysis is made there could be units which
had a failure but are not registered in the database and therefore treated as censored units. To
overcome this problem this function uses a Monte Carlo approach for simulating the operating
times of (multiple) right censored observations, taking account of reporting delays. The simulation
is based on the distribution of operating times that were calculated from complete data, i.e. failed
items (see dist_delay_report).

Value

A numeric vector of corrected operating times for the censored units and the input operating times
for the failed units if details = FALSE. If details = TRUE the output is a list which consists of the
following elements:

• time : Numeric vector of corrected operating times for the censored observations and input
operating times for failed units.

• x_sim : Simulated random numbers of specified distribution with estimated parameters. The
length of x_sim is equal to the number of censored observations.

• coefficients : Estimated coefficients of supposed distribution.

Examples

date_of_repair <- c(NA, "2014-09-15", "2015-07-04", "2015-04-10", NA,
NA, "2015-04-24", NA, "2015-04-25", "2015-04-24",
"2015-06-12", NA, "2015-05-04", NA, NA,
"2015-05-22", NA, "2015-09-17", NA, "2015-08-15",
"2015-11-26", NA, NA)

date_of_report <- c(NA, "2014-10-09", "2015-08-28", "2015-04-15", NA,
NA, "2015-05-16", NA, "2015-05-28", "2015-05-15",
"2015-07-11", NA, "2015-08-14", NA, NA,
"2015-06-05", NA, "2015-10-17", NA, "2015-08-21",
"2015-12-02", NA, NA)

op_time <- rep(1000, length(date_of_repair))
status <- c(0, 1, 1, 1, 0, 0, 1, 0, 1, 1, 1, 0, 1, 0, 0, 1, 0, 1, 0, 1, 1, 0, 0)

Example 1 - Simplified vector output:
x_corrected <- mcs_delay_report(

date_repair = date_of_repair,

60 mcs_mileage

date_report = date_of_report,
time = op_time,
status = status,
distribution = "lognormal",
details = FALSE

)

Example 2 - Detailed list output:
list_detail <- mcs_delay_report(

date_repair = date_of_repair,
date_report = date_of_report,
time = op_time,
status = status,
distribution = "lognormal",
details = TRUE

)

mcs_mileage Simulation of Unknown Covered Distances using a Monte Carlo Ap-
proach

Description

This function simulates distances for units where these are unknown.

First, random numbers of the annual mileage distribution, estimated by dist_mileage, are drawn.
Second, the drawn annual distances are converted with respect to the actual operating times (in
days) using a linear relationship. See ’Details’.

Usage

mcs_mileage(x, ...)

S3 method for class 'wt_mcs_mileage_data'
mcs_mileage(x, distribution = c("lognormal", "exponential"), ...)

Arguments

x A tibble of class wt_mcs_mileage_data returned by mcs_mileage_data.
... Further arguments passed to or from other methods. Currently not used.
distribution Supposed distribution of the annual mileage.

Details

Assumption of linear relationship: Imagine the distance of the vehicle is unknown. A distance of
3500.25 kilometers (km) was drawn from the annual distribution and the known operating time is
200 days (d). So the resulting distance of this vehicle is

3500.25km · (200d
365d

) = 1917.945km

mcs_mileage 61

Value

A list with class wt_mcs_mileage containing the following elements:

• data : A tibble returned by mcs_mileage_data where two modifications has been made:

– If the column status exists, the tibble has additional classes wt_mcs_data and wt_reliability_data.
Otherwise, the tibble only has the additional class wt_mcs_data (which is not supported
by estimate_cdf).

– The column mileage is renamed to x (to be in accordance with reliability_data) and con-
tains simulated distances for incomplete observations and input distances for the complete
observations.

• sim_data : A tibble with column sim_mileage that holds the simulated distances for in-
complete cases and 0 for complete cases.

• model_estimation : A list returned by dist_mileage.

See Also

dist_mileage for the determination of a parametric annual mileage distribution and estimate_cdf for
the estimation of failure probabilities.

Examples

MCS data preparation:
mcs_tbl <- mcs_mileage_data(

field_data,
mileage = mileage,
time = dis,
status = status,
id = vin

)

Example 1 - Reproducibility of drawn random numbers:
set.seed(1234)
mcs_distances <- mcs_mileage(

x = mcs_tbl,
distribution = "lognormal"

)

Example 2 - MCS for distances with exponential annual mileage distribution:
mcs_distances_2 <- mcs_mileage(

x = mcs_tbl,
distribution = "exponential"

)

Example 3 - MCS for distances with downstream probability estimation:
Apply 'estimate_cdf()' to *$data:
prob_estimation <- estimate_cdf(

x = mcs_distances$data,
methods = "kaplan"

)

62 mcs_mileage.default

Apply 'plot_prob()':
plot_prob_estimation <- plot_prob(prob_estimation)

mcs_mileage.default Simulation of Unknown Covered Distances using a Monte Carlo Ap-
proach

Description

This function simulates distances for units where these are unknown.

First, random numbers of the annual mileage distribution, estimated by dist_mileage, are drawn.
Second, the drawn annual distances are converted with respect to the actual operating times (in
days) using a linear relationship. See ’Details’.

Usage

Default S3 method:
mcs_mileage(

x,
time,
status = NULL,
id = paste0("ID", seq_len(length(time))),
distribution = c("lognormal", "exponential"),
...

)

Arguments

x A numeric vector of distances covered. Use NA for missing elements.

time A numeric vector of operating times. Use NA for missing elements.

status Optional argument. If used, it must contain binary data (0 or 1) indicating
whether a unit is a right censored observation (= 0) or a failure (= 1).
If status is provided, class wt_reliability_data is assigned to the output of
mcs_mileage, which enables the direct application of estimate_cdf on distances.

id Identification of every unit.

distribution Supposed distribution of the annual mileage.

... Further arguments passed to or from other methods. Currently not used.

Details

Assumption of linear relationship: Imagine the distance of the vehicle is unknown. A distance of
3500.25 kilometers (km) was drawn from the annual distribution and the known operating time is
200 days (d). So the resulting distance of this vehicle is

3500.25km · (200d
365d

) = 1917.945km

mcs_mileage.default 63

Value

A list with class wt_mcs_mileage containing the following elements:

• data : A tibble returned by mcs_mileage_data where two modifications has been made:

– If the column status exists, the tibble has additional classes wt_mcs_data and wt_reliability_data.
Otherwise, the tibble only has the additional class wt_mcs_data (which is not supported
by estimate_cdf).

– The column mileage is renamed to x (to be in accordance with reliability_data) and con-
tains simulated distances for incomplete observations and input distances for the complete
observations.

• sim_data : A tibble with column sim_mileage that holds the simulated distances for in-
complete cases and 0 for complete cases.

• model_estimation : A list returned by dist_mileage.

See Also

dist_mileage for the determination of a parametric annual mileage distribution and estimate_cdf for
the estimation of failure probabilities.

Examples

Example 1 - Reproducibility of drawn random numbers:
set.seed(1234)
mcs_distances <- mcs_mileage(

x = field_data$mileage,
time = field_data$dis,
status = field_data$status,
id = field_data$vin,
distribution = "lognormal"

)

Example 2 - MCS for distances with exponential annual mileage distribution:
mcs_distances_2 <- mcs_mileage(

x = field_data$mileage,
time = field_data$dis,
status = field_data$status,
id = field_data$vin,
distribution = "exponential"

)

Example 3 - MCS for distances with downstream probability estimation:
Apply 'estimate_cdf()' to *$data:
prob_estimation <- estimate_cdf(

x = mcs_distances$data,
methods = "kaplan"

)

Apply 'plot_prob()':
plot_prob_estimation <- plot_prob(prob_estimation)

64 mcs_mileage_data

mcs_mileage_data MCS Mileage Data

Description

Create consistent mcs_mileage_data based on an existing data.frame (preferred) or on multiple
equal length vectors

Usage

mcs_mileage_data(
data = NULL,
mileage,
time,
status = NULL,
id = NULL,
.keep_all = FALSE

)

Arguments

data Either NULL or a data.frame. If data is NULL, mileage, time, status and id
must be vectors containing the data. Otherwise mileage, time, status and id
can be either column names or column positions.

mileage Covered distances. Use NA for missing elements.
time Operating times. Use NA for missing elements.
status Optional argument. If used, it must contain binary data (0 or 1) indicating

whether a unit is a right censored observation (= 0) or a failure (= 1).
If status is provided, class wt_reliability_data is assigned to the output of
mcs_mileage, which enables the direct application of estimate_cdf on distances.

id Identification of every unit.
.keep_all If TRUE keep remaining variables in data.

Value

A tibble with class wt_mcs_mileage_data that is formed for the downstream Monte Carlo method
mcs_mileage. It contains the following columns (if .keep_all = FALSE):

• mileage : Input mileages.
• time : Input operating times.
• status (optional) :

– If is.null(status) column status does not exist.
– If status is provided the column contains the entered binary data (0 or 1).

• id : Identification for every unit.

If .keep_all = TRUE, the remaining columns of data are also preserved.

The attribute mcs_characteristic is set to "mileage".

mixmod_em 65

See Also

dist_mileage for the determination of a parametric annual mileage distribution and mcs_mileage for
the Monte Carlo method with respect to unknown distances.

Examples

Example 1 - Based on an existing data.frame/tibble and column names:
mcs_tbl <- mcs_mileage_data(

data = field_data,
mileage = mileage,
time = dis,
status = status

)

Example 2 - Based on an existing data.frame/tibble and column positions:
mcs_tbl_2 <- mcs_mileage_data(

data = field_data,
mileage = 3,
time = 2,
id = 1

)

Example 3 - Keep all variables of the tibble/data.frame entered to argument data:
mcs_tbl_3 <- mcs_mileage_data(

data = field_data,
mileage = mileage,
time = dis,
status = status,
id = vin,
.keep_all = TRUE

)

Example 4 - Based on vectors:
mcs_tbl_4 <- mcs_mileage_data(

mileage = field_data$mileage,
time = field_data$dis,
status = field_data$status,
id = field_data$vin

)

mixmod_em Weibull Mixture Model Estimation using EM-Algorithm

Description

This method applies the expectation-maximization (EM) algorithm to estimate the parameters of a
univariate Weibull mixture model. See ’Details’.

66 mixmod_em

Usage

mixmod_em(x, ...)

S3 method for class 'wt_reliability_data'
mixmod_em(
x,
distribution = "weibull",
conf_level = 0.95,
k = 2,
method = "EM",
n_iter = 100L,
conv_limit = 1e-06,
diff_loglik = 0.01,
...

)

Arguments

x A tibble with class wt_reliability_data returned by reliability_data.

... Further arguments passed to or from other methods. Currently not used.

distribution "weibull" until further distributions are implemented.

conf_level Confidence level for the intervals of the Weibull parameters of every component
k.

k Number of mixture components.

method "EM" until other methods are implemented.

n_iter Integer defining the maximum number of iterations.

conv_limit Numeric value defining the convergence limit.

diff_loglik Numeric value defining the maximum difference between log-likelihood values,
which seems permissible.

Details

The EM algorithm is an iterative algorithm for which starting values must be defined. Starting
values can be provided for the unknown parameter vector as well as for the posterior probabilities.
This implementation employs initial values for the posterior probabilities. These are assigned ran-
domly by using the Dirichlet distribution, the conjugate prior of a multinomial distribution (see Mr.
Gelissen’s blog post listed under references).

M-Step : On the basis of the initial posterior probabilities, the parameter vector is estimated with
Newton-Raphson.

E-Step : The actual estimated parameter vector is used to perform an update of the posterior prob-
abilities.

This procedure is repeated until the complete log-likelihood has converged.

mixmod_em 67

Value

A list with classes wt_model and wt_mixmod_em. The length of the list depends on the number
of specified subgroups k. The first k lists contain information provided by ml_estimation. The
values of logL, aic and bic are the results of a weighted log-likelihood, where the weights are the
posterior probabilities determined by the algorithm. The last list summarizes further results of the
EM algorithm and is therefore called em_results. It contains the following elements:

• a_priori : A vector with estimated prior probabilities.

• a_posteriori : A matrix with estimated posterior probabilities.

• groups : Numeric vector specifying the group membership of every observation.

• logL : The value of the complete log-likelihood.

• aic : Akaike Information Criterion.

• bic : Bayesian Information Criterion.

References

• Doganaksoy, N.; Hahn, G.; Meeker, W. Q., Reliability Analysis by Failure Mode, Quality
Progress, 35(6), 47-52, 2002

Examples

Reliability data preparation:
Data for mixture model:
data_mix <- reliability_data(

voltage,
x = hours,
status = status

)

Example 1 - EM algorithm with k = 2:
mix_mod_em <- mixmod_em(

x = data_mix,
conf_level = 0.95,
k = 2,
n_iter = 150

)

Example 2 - Maximum likelihood is applied when k = 1:
mix_mod_em_2 <- mixmod_em(

x = data_mix,
conf_level = 0.95,
k = 1,
n_iter = 150

)

68 mixmod_em.default

mixmod_em.default Weibull Mixture Model Estimation using EM-Algorithm

Description

This method applies the expectation-maximization (EM) algorithm to estimate the parameters of a
univariate Weibull mixture model. See ’Details’.

Usage

Default S3 method:
mixmod_em(

x,
status,
distribution = "weibull",
conf_level = 0.95,
k = 2,
method = "EM",
n_iter = 100L,
conv_limit = 1e-06,
diff_loglik = 0.01,
...

)

Arguments

x A numeric vector which consists of lifetime data. Lifetime data could be ev-
ery characteristic influencing the reliability of a product, e.g. operating time
(days/months in service), mileage (km, miles), load cycles.

status A vector of binary data (0 or 1) indicating whether a unit is a right censored
observation (= 0) or a failure (= 1).

distribution "weibull" until further distributions are implemented.

conf_level Confidence level for the intervals of the Weibull parameters of every component
k.

k Number of mixture components.

method "EM" until other methods are implemented.

n_iter Integer defining the maximum number of iterations.

conv_limit Numeric value defining the convergence limit.

diff_loglik Numeric value defining the maximum difference between log-likelihood values,
which seems permissible.

... Further arguments passed to or from other methods. Currently not used.

mixmod_em.default 69

Details

The EM algorithm is an iterative algorithm for which starting values must be defined. Starting
values can be provided for the unknown parameter vector as well as for the posterior probabilities.
This implementation employs initial values for the posterior probabilities. These are assigned ran-
domly by using the Dirichlet distribution, the conjugate prior of a multinomial distribution (see Mr.
Gelissen’s blog post listed under references).

M-Step : On the basis of the initial posterior probabilities, the parameter vector is estimated with
Newton-Raphson.

E-Step : The actual estimated parameter vector is used to perform an update of the posterior prob-
abilities.

This procedure is repeated until the complete log-likelihood has converged.

Value

A list with classes wt_model and wt_mixmod_em. The length of the list depends on the number
of specified subgroups k. The first k lists contain information provided by ml_estimation. The
values of logL, aic and bic are the results of a weighted log-likelihood, where the weights are the
posterior probabilities determined by the algorithm. The last list summarizes further results of the
EM algorithm and is therefore called em_results. It contains the following elements:

• a_priori : A vector with estimated prior probabilities.

• a_posteriori : A matrix with estimated posterior probabilities.

• groups : Numeric vector specifying the group membership of every observation.

• logL : The value of the complete log-likelihood.

• aic : Akaike Information Criterion.

• bic : Bayesian Information Criterion.

References

• Doganaksoy, N.; Hahn, G.; Meeker, W. Q., Reliability Analysis by Failure Mode, Quality
Progress, 35(6), 47-52, 2002

See Also

mixmod_em

Examples

Vectors:
hours <- voltage$hours
status <- voltage$status

Example 1 - EM algorithm with k = 2:
mix_mod_em <- mixmod_em(

x = hours,
status = status,
distribution = "weibull",

70 mixmod_regression

conf_level = 0.95,
k = 2,
n_iter = 150

)

#' # Example 2 - Maximum likelihood is applied when k = 1:
mix_mod_em_2 <- mixmod_em(

x = hours,
status = status,
distribution = "weibull",
conf_level = 0.95,
k = 1,
method = "EM",
n_iter = 150

)

mixmod_regression Mixture Model Identification using Segmented Regression

Description

This function uses piecewise linear regression to divide the data into subgroups. See ’Details’.

Usage

mixmod_regression(x, ...)

S3 method for class 'wt_cdf_estimation'
mixmod_regression(
x,
distribution = c("weibull", "lognormal", "loglogistic"),
conf_level = 0.95,
k = 2,
control = segmented::seg.control(),
...

)

Arguments

x A tibble with class wt_cdf_estimation returned by estimate_cdf.
... Further arguments passed to or from other methods. Currently not used.
distribution Supposed distribution of the random variable.
conf_level Confidence level of the interval.
k Number of mixture components. If the data should be split in an automated

fashion, k must be set to NULL. The argument fix.psi of control is then set to
FALSE.

control Output of the call to seg.control, which is passed to segmented.lm. See ’Exam-
ples’ for usage.

mixmod_regression 71

Details

The segmentation process is based on the lifetime realizations of failed units and their corresponding
estimated failure probabilities for which intact items are taken into account. It is performed with
the support of segmented.lm.

Segmentation can be done with a specified number of subgroups or in an automated fashion (see
argument k). The algorithm tends to overestimate the number of breakpoints when the separation is
done automatically (see ’Warning’ in segmented.lm).

In the context of reliability analysis it is important that the main types of failures can be identified
and analyzed separately. These are

• early failures,

• random failures and

• wear-out failures.

In order to reduce the risk of overestimation as well as being able to consider the main types of
failures, a maximum of three subgroups (k = 3) is recommended.

Value

A list with classes wt_model and wt_rank_regression if no breakpoint was detected. See rank_regression.

A list with classes wt_model and wt_mixmod_regression if at least one breakpoint was deter-
mined. The length of the list depends on the number of identified subgroups. Each list element
contains the information provided by rank_regression. In addition, the returned tibble data of each
list element only retains information on the failed units and has two more columns:

• q : Quantiles of the standard distribution calculated from column prob.

• group : Membership to the respective segment.

If more than one method was specified in estimate_cdf, the resulting output is a list with classes
wt_model and wt_mixmod_regression_list where each list element has classes wt_model and
wt_mixmod_regression.

References

Doganaksoy, N.; Hahn, G.; Meeker, W. Q., Reliability Analysis by Failure Mode, Quality Progress,
35(6), 47-52, 2002

Examples

Reliability data preparation:
Data for mixture model:
data_mix <- reliability_data(

voltage,
x = hours,
status = status

)

Data for simple unimodal distribution:
data <- reliability_data(

72 mixmod_regression

shock,
x = distance,
status = status

)

Probability estimation with one method:
prob_mix <- estimate_cdf(

data_mix,
methods = "johnson"

)

prob <- estimate_cdf(
data,
methods = "johnson"

)

Probability estimation for multiple methods:
prob_mix_mult <- estimate_cdf(

data_mix,
methods = c("johnson", "kaplan", "nelson")

)

Example 1 - Mixture identification using k = 2 two-parametric Weibull models:
mix_mod_weibull <- mixmod_regression(

x = prob_mix,
distribution = "weibull",
conf_level = 0.99,
k = 2

)

Example 2 - Mixture identification using k = 3 two-parametric lognormal models:
mix_mod_lognorm <- mixmod_regression(

x = prob_mix,
distribution = "lognormal",
k = 3

)

Example 3 - Mixture identification for multiple methods specified in estimate_cdf:
mix_mod_mult <- mixmod_regression(

x = prob_mix_mult,
distribution = "loglogistic"

)

Example 4 - Mixture identification using control argument:
mix_mod_control <- mixmod_regression(

x = prob_mix,
distribution = "weibull",
control = segmented::seg.control(display = TRUE)

)

Example 5 - Mixture identification performs rank_regression for k = 1:
mod <- mixmod_regression(

x = prob,

mixmod_regression.default 73

distribution = "weibull",
k = 1

)

mixmod_regression.default

Mixture Model Identification using Segmented Regression

Description

This function uses piecewise linear regression to divide the data into subgroups. See ’Details’.

Usage

Default S3 method:
mixmod_regression(

x,
y,
status,
distribution = c("weibull", "lognormal", "loglogistic"),
conf_level = 0.95,
k = 2,
control = segmented::seg.control(),
...

)

Arguments

x A numeric vector which consists of lifetime data. Lifetime data could be ev-
ery characteristic influencing the reliability of a product, e.g. operating time
(days/months in service), mileage (km, miles), load cycles.

y A numeric vector which consists of estimated failure probabilities regarding the
lifetime data in x.

status A vector of binary data (0 or 1) indicating whether a unit is a right censored
observation (= 0) or a failure (= 1).

distribution Supposed distribution of the random variable.

conf_level Confidence level of the interval.

k Number of mixture components. If the data should be split in an automated
fashion, k must be set to NULL. The argument fix.psi of control is then set to
FALSE.

control Output of the call to seg.control, which is passed to segmented.lm. See ’Exam-
ples’ for usage.

... Further arguments passed to or from other methods. Currently not used.

74 mixmod_regression.default

Details

The segmentation process is based on the lifetime realizations of failed units and their corresponding
estimated failure probabilities for which intact items are taken into account. It is performed with
the support of segmented.lm.

Segmentation can be done with a specified number of subgroups or in an automated fashion (see
argument k). The algorithm tends to overestimate the number of breakpoints when the separation is
done automatically (see ’Warning’ in segmented.lm).

In the context of reliability analysis it is important that the main types of failures can be identified
and analyzed separately. These are

• early failures,

• random failures and

• wear-out failures.

In order to reduce the risk of overestimation as well as being able to consider the main types of
failures, a maximum of three subgroups (k = 3) is recommended.

Value

A list with classes wt_model and wt_rank_regression if no breakpoint was detected. See rank_regression.
The returned tibble data is of class wt_cdf_estimation and contains the dummy columns cdf_estimation_method
and id. The former is filled with NA_character, due to internal usage and the latter is filled with
"XXXXXX" to point out that unit identification is not possible when using the vector-based approach.

A list with classes wt_model and wt_mixmod_regression if at least one breakpoint was deter-
mined. The length of the list depends on the number of identified subgroups. Each list contains the
information provided by rank_regression. The returned tibble data of each list element only retains
information on the failed units and has modified and additional columns:

• id : Modified id, overwritten with "XXXXXX" to point out that unit identification is not possible
when using the vector-based approach.

• cdf_estimation_method : A character that is always NA_character. Only needed for inter-
nal use.

• q : Quantiles of the standard distribution calculated from column prob.

• group : Membership to the respective segment.

References

Doganaksoy, N.; Hahn, G.; Meeker, W. Q., Reliability Analysis by Failure Mode, Quality Progress,
35(6), 47-52, 2002

See Also

mixmod_regression

mixmod_regression.default 75

Examples

Vectors:
Data for mixture model:
hours <- voltage$hours
status <- voltage$status

Data for simple unimodal distribution:
distance <- shock$distance
status_2 <- shock$status

Probability estimation with one method:
prob_mix <- estimate_cdf(

x = hours,
status = status,
method = "johnson"

)

prob <- estimate_cdf(
x = distance,
status = status_2,
method = "johnson"

)

Example 1 - Mixture identification using k = 2 two-parametric Weibull models:
mix_mod_weibull <- mixmod_regression(

x = prob_mix$x,
y = prob_mix$prob,
status = prob_mix$status,
distribution = "weibull",
conf_level = 0.99,
k = 2

)

Example 2 - Mixture identification using k = 3 two-parametric lognormal models:
mix_mod_lognorm <- mixmod_regression(

x = prob_mix$x,
y = prob_mix$prob,
status = prob_mix$status,
distribution = "lognormal",
k = 3

)

Example 3 - Mixture identification using control argument:
mix_mod_control <- mixmod_regression(

x = prob_mix$x,
y = prob_mix$prob,
status = prob_mix$status,
distribution = "weibull",
k = 2,
control = segmented::seg.control(display = TRUE)

)

76 ml_estimation

Example 4 - Mixture identification performs rank_regression for k = 1:
mod <- mixmod_regression(

x = prob$x,
y = prob$prob,
status = prob$status,
distribution = "weibull",
k = 1

)

ml_estimation ML Estimation for Parametric Lifetime Distributions

Description

This function estimates the parameters of a parametric lifetime distribution for complete and (multi-
ple) right-censored data. The parameters are determined in the frequently used (log-)location-scale
parameterization.

For the Weibull, estimates are additionally transformed such that they are in line with the parame-
terization provided by the stats package (see Weibull).

Usage

ml_estimation(x, ...)

S3 method for class 'wt_reliability_data'
ml_estimation(
x,
distribution = c("weibull", "lognormal", "loglogistic", "sev", "normal", "logistic",

"weibull3", "lognormal3", "loglogistic3", "exponential", "exponential2"),
wts = rep(1, nrow(x)),
conf_level = 0.95,
start_dist_params = NULL,
control = list(),
...

)

Arguments

x A tibble with class wt_reliability_data returned by reliability_data.
... Further arguments passed to or from other methods. Currently not used.
distribution Supposed distribution of the random variable.
wts Optional vector of case weights. The length of wts must be equal to the number

of observations in x.
conf_level Confidence level of the interval.
start_dist_params

Optional vector with initial values of the (log-)location-scale parameters.
control A list of control parameters (see ’Details’ and optim).

ml_estimation 77

Details

Within ml_estimation, optim is called with method = "BFGS" and control$fnscale = -1 to esti-
mate the parameters that maximize the log-likelihood (see loglik_function). For threshold models,
the profile log-likelihood is maximized in advance (see loglik_profiling). Once the threshold pa-
rameter is determined, the threshold model is treated like a distribution without threshold (lifetime
is reduced by threshold estimate) and the general optimization routine is applied.

Normal approximation confidence intervals for the parameters are computed as well.

Value

A list with classes wt_model, wt_ml_estimation and wt_model_estimation which contains:

• coefficients : A named vector of estimated coefficients (parameters of the assumed distri-
bution). Note: The parameters are given in the (log-)location-scale-parameterization.

• confint : Confidence intervals for the (log-)location-scale parameters.

• shape_scale_coefficients : Only included if distribution is "weibull" or "weibull3"
(parameterization used in Weibull).

• shape_scale_confint : Only included if distribution is "weibull" or "weibull3". Con-
fidence intervals for scale η and shape β (and threshold γ if distribution = "weibull3").

• varcov : Estimated variance-covariance matrix of (log-)location-scale parameters.

• logL : The log-likelihood value.

• aic : Akaike Information Criterion.

• bic : Bayesian Information Criterion.

• data : A tibble with class wt_reliability_data returned by

• distribution : Specified distribution.

References

Meeker, William Q; Escobar, Luis A., Statistical methods for reliability data, New York: Wiley
series in probability and statistics, 1998

Examples

Reliability data preparation:
Data for two-parametric model:
data_2p <- reliability_data(

shock,
x = distance,
status = status

)

Data for three-parametric model:
data_3p <- reliability_data(

alloy,
x = cycles,
status = status

)

78 ml_estimation.default

Example 1 - Fitting a two-parametric weibull distribution:
ml_2p <- ml_estimation(

data_2p,
distribution = "weibull"

)

Example 2 - Fitting a three-parametric lognormal distribution:
ml_3p <- ml_estimation(

data_3p,
distribution = "lognormal3",
conf_level = 0.99

)

ml_estimation.default ML Estimation for Parametric Lifetime Distributions

Description

This function estimates the parameters of a parametric lifetime distribution for complete and (multi-
ple) right-censored data. The parameters are determined in the frequently used (log-)location-scale
parameterization.

For the Weibull, estimates are additionally transformed such that they are in line with the parame-
terization provided by the stats package (see Weibull).

Usage

Default S3 method:
ml_estimation(
x,
status,
distribution = c("weibull", "lognormal", "loglogistic", "sev", "normal", "logistic",

"weibull3", "lognormal3", "loglogistic3", "exponential", "exponential2"),
wts = rep(1, length(x)),
conf_level = 0.95,
start_dist_params = NULL,
control = list(),
...

)

Arguments

x A numeric vector which consists of lifetime data. Lifetime data could be ev-
ery characteristic influencing the reliability of a product, e.g. operating time
(days/months in service), mileage (km, miles), load cycles.

status A vector of binary data (0 or 1) indicating whether a unit is a right censored
observation (= 0) or a failure (= 1).

ml_estimation.default 79

distribution Supposed distribution of the random variable.

wts Optional vector of case weights. The length of wts must be equal to the number
of observations in x.

conf_level Confidence level of the interval.
start_dist_params

Optional vector with initial values of the (log-)location-scale parameters.

control A list of control parameters (see ’Details’ and optim).

... Further arguments passed to or from other methods. Currently not used.

Details

Within ml_estimation, optim is called with method = "BFGS" and control$fnscale = -1 to esti-
mate the parameters that maximize the log-likelihood (see loglik_function). For threshold models,
the profile log-likelihood is maximized in advance (see loglik_profiling). Once the threshold pa-
rameter is determined, the threshold model is treated like a distribution without threshold (lifetime
is reduced by threshold estimate) and the general optimization routine is applied.

Normal approximation confidence intervals for the parameters are computed as well.

Value

A list with classes wt_model, wt_ml_estimation and wt_model_estimation which contains:

• coefficients : A named vector of estimated coefficients (parameters of the assumed distri-
bution). Note: The parameters are given in the (log-)location-scale-parameterization.

• confint : Confidence intervals for the (log-)location-scale parameters.

• shape_scale_coefficients : Only included if distribution is "weibull" or "weibull3"
(parameterization used in Weibull).

• shape_scale_confint : Only included if distribution is "weibull" or "weibull3". Con-
fidence intervals for scale η and shape β (and threshold γ if distribution = "weibull3").

• varcov : Estimated variance-covariance matrix of (log-)location-scale parameters.

• logL : The log-likelihood value.

• aic : Akaike Information Criterion.

• bic : Bayesian Information Criterion.

• data : A tibble with columns x and status.

• distribution : Specified distribution.

References

Meeker, William Q; Escobar, Luis A., Statistical methods for reliability data, New York: Wiley
series in probability and statistics, 1998

See Also

ml_estimation

80 mr_method

Examples

Vectors:
obs <- seq(10000, 100000, 10000)
status_1 <- c(0, 1, 1, 0, 0, 0, 1, 0, 1, 0)

cycles <- alloy$cycles
status_2 <- alloy$status

Example 1 - Fitting a two-parametric weibull distribution:
ml <- ml_estimation(

x = obs,
status = status_1,
distribution = "weibull",
conf_level = 0.90

)

Example 2 - Fitting a three-parametric lognormal distribution:
ml_2 <- ml_estimation(

x = cycles,
status = status_2,
distribution = "lognormal3"

)

mr_method Estimation of Failure Probabilities using Median Ranks

Description

[Soft-deprecated]
mr_method() is no longer under active development, switching to estimate_cdf is recommended.

Usage

mr_method(
x,
status = rep(1, length(x)),
id = NULL,
method = c("benard", "invbeta"),
ties.method = c("max", "min", "average")

)

Arguments

x A numeric vector which consists of lifetime data. Lifetime data could be ev-
ery characteristic influencing the reliability of a product, e.g. operating time
(days/months in service), mileage (km, miles), load cycles.

status A vector of ones indicating that every unit has failed.

mr_method 81

id A vector for the identification of every unit. Default is NULL.

method Method for the estimation of the cdf. Can be "benard" (default) or "invbeta".

ties.method A character string specifying how ties are treated, default is "max".

Details

This non-parametric approach (Median Ranks) is used to estimate the failure probabilities in terms
of complete data. Two methods are available to estimate the cumulative distribution function F(t):

• "benard" : Benard’s approximation for Median Ranks.

• "invbeta" : Exact Median Ranks using the inverse beta distribution.

Value

A tibble with only failed units containing the following columns:

• id : Identification for every unit.

• x : Lifetime characteristic.

• status : Status of failed units (always 1).

• rank : Assigned ranks.

• prob : Estimated failure probabilities.

• cdf_estimation_method : Specified method for the estimation of failure probabilities (al-
ways ’mr’).

Examples

Vectors:
obs <- seq(10000, 100000, 10000)
state <- rep(1, length(obs))
uic <- c("3435", "1203", "958X", "XX71", "abcd", "tz46",

"fl29", "AX23", "Uy12", "kl1a")

Example 1 - Benard's approximation:
tbl_mr <- mr_method(

x = obs,
status = state,
id = uic,
method = "benard"

)

Example 2 - Inverse beta distribution:
tbl_mr_invbeta <- mr_method(

x = obs,
status = state,
method = "invbeta"

)

82 nelson_method

nelson_method Estimation of Failure Probabilities using the Nelson-Aalen Estimator

Description

[Soft-deprecated]

nelson_method() is no longer under active development, switching to estimate_cdf is recom-
mended.

Usage

nelson_method(x, status, id = NULL)

Arguments

x A numeric vector which consists of lifetime data. Lifetime data could be ev-
ery characteristic influencing the reliability of a product, e.g. operating time
(days/months in service), mileage (km, miles), load cycles.

status A vector of binary data (0 or 1) indicating whether a unit is a right censored
observation (= 0) or a failure (= 1).

id A vector for the identification of every unit. Default is NULL.

Details

This non-parametric approach estimates the cumulative hazard rate in terms of (multiple) right
censored data. By equating the definition of the hazard rate with the hazard rate according to
Nelson-Aalen one can calculate the failure probabilities.

Value

A tibble containing the following columns:

• id : Identification for every unit.

• x : Lifetime characteristic.

• status : Binary data (0 or 1) indicating whether a unit is a right censored observation (= 0)
or a failure (= 1).

• rank : Filled with NA.

• prob : Estimated failure probabilities, NA if status = 0.

• cdf_estimation_method : Specified method for the estimation of failure probabilities (al-
ways ’nelson’).

plot_conf 83

Examples

Vectors:
obs <- seq(10000, 100000, 10000)
state <- c(0, 1, 1, 0, 0, 0, 1, 0, 1, 0)
uic <- c("3435", "1203", "958X", "XX71", "abcd", "tz46",

"fl29", "AX23","Uy12", "kl1a")

Example - Nelson-Aalen estimator applied to intact and failed units:
tbl_nel <- nelson_method(

x = obs,
status = state,
id = uic

)

plot_conf Add Confidence Region(s) for Quantiles and Probabilities

Description

This function is used to add estimated confidence region(s) to an existing probability plot. Since
confidence regions are related to the estimated regression line, the latter is provided as well.

Usage

plot_conf(p_obj, x, ...)

S3 method for class 'wt_confint'
plot_conf(
p_obj,
x,
title_trace_mod = "Fit",
title_trace_conf = "Confidence Limit",
...

)

Arguments

p_obj A plot object returned by plot_prob.

x A tibble with class wt_confint returned by confint_betabinom or confint_fisher.

... Further arguments passed to or from other methods. Currently not used.
title_trace_mod

A character string which is assigned to the model trace in the legend.
title_trace_conf

A character string which is assigned to the confidence trace in the legend.

84 plot_conf

Value

A plot object containing the probability plot with plotting positions, the estimated regression line
and the estimated confidence region(s).

References

Meeker, William Q; Escobar, Luis A., Statistical methods for reliability data, New York: Wiley
series in probability and statistics, 1998

Examples

Reliability data:
data <- reliability_data(data = alloy, x = cycles, status = status)

Probability estimation:
prob_tbl <- estimate_cdf(data, methods = "johnson")

Example 1 - Probability Plot, Regression Line and Confidence Bounds for Three-Parameter-Weibull:
rr <- rank_regression(prob_tbl, distribution = "weibull3")

conf_betabin <- confint_betabinom(rr)

plot_weibull <- plot_prob(prob_tbl, distribution = "weibull")

plot_conf_beta <- plot_conf(
p_obj = plot_weibull,
x = conf_betabin

)

Example 2 - Probability Plot, Regression Line and Confidence Bounds for Three-Parameter-Lognormal:
rr_ln <- rank_regression(

prob_tbl,
distribution = "lognormal3",
conf_level = 0.9

)

conf_betabin_ln <- confint_betabinom(
rr_ln,
bounds = "two_sided",
conf_level = 0.9,
direction = "y"

)

plot_lognormal <- plot_prob(prob_tbl, distribution = "lognormal")

plot_conf_beta_ln <- plot_conf(
p_obj = plot_lognormal,
x = conf_betabin_ln

)

Example 3 - Probability Plot, Regression Line and Confidence Bounds for MLE
ml <- ml_estimation(data, distribution = "weibull")

plot_conf.default 85

conf_fisher <- confint_fisher(ml)

plot_weibull <- plot_prob(prob_tbl, distribution = "weibull")

plot_conf_fisher_weibull <- plot_conf(
p_obj = plot_weibull,
x = conf_fisher

)

plot_conf.default Add Confidence Region(s) for Quantiles and Probabilities

Description

This function is used to add estimated confidence region(s) to an existing probability plot which
also includes the estimated regression line.

Usage

Default S3 method:
plot_conf(

p_obj,
x,
y,
distribution = c("weibull", "lognormal", "loglogistic", "sev", "normal", "logistic",

"weibull3", "lognormal3", "loglogistic3", "exponential", "exponential2"),
direction = c("y", "x"),
title_trace = "Confidence Limit",
...

)

Arguments

p_obj A plot object returned by plot_mod.

x A list containing the x-coordinates of the confidence region(s). The list can be
of length 1 or 2. For more information see Details.

y A list containing the y-coordinates of the Confidence Region(s). The list can be
of length 1 or 2. For more information see Details.

distribution Supposed distribution of the random variable.

direction A character string specifying the direction of the plotted interval(s). "y" for
failure probabilities or "x" for quantiles.

title_trace A character string which is assigned to the legend trace.

... Further arguments passed to or from other methods. Currently not used.

86 plot_conf.default

Details

It is important that the length of the vectors provided as lists in x and y match with the length of the
vectors x and y in the function plot_mod. For this reason the following procedure is recommended:

• Calculate confidence intervals with the function confint_betabinom or confint_fisher and store
it in a data.frame. For instance call it df.

• Inside plot_mod use the output df$x for x and df$prob for y of the function(s) named before.

• In Examples the described approach is shown with code.

Value

A plot object containing the probability plot with plotting positions, the estimated regression line
and the estimated confidence region(s).

References

Meeker, William Q; Escobar, Luis A., Statistical methods for reliability data, New York: Wiley
series in probability and statistics, 1998

See Also

plot_conf

Examples

Vectors:
cycles <- alloy$cycles
status <- alloy$status

prob_tbl <- estimate_cdf(x = cycles, status = status, method = "johnson")

Example 1 - Probability Plot, Regression Line and Confidence Bounds for Three-Parameter-Weibull:
rr <- rank_regression(

x = prob_tbl$x,
y = prob_tbl$prob,
status = prob_tbl$status,
distribution = "weibull3"

)

conf_betabin <- confint_betabinom(
x = prob_tbl$x,
status = prob_tbl$status,
dist_params = rr$coefficients,
distribution = "weibull3"

)

plot_weibull <- plot_prob(
x = prob_tbl$x,
y = prob_tbl$prob,
status = prob_tbl$status,
id = prob_tbl$id,

plot_conf.default 87

distribution = "weibull"
)

plot_reg_weibull <- plot_mod(
p_obj = plot_weibull,
x = conf_betabin$x,
y = conf_betabin$prob,
dist_params = rr$coefficients,
distribution = "weibull3"

)

plot_conf_beta <- plot_conf(
p_obj = plot_reg_weibull,
x = list(conf_betabin$x),
y = list(conf_betabin$lower_bound, conf_betabin$upper_bound),
direction = "y",
distribution = "weibull3"

)

Example 2 - Probability Plot, Regression Line and Confidence Bounds for Three-Parameter-Lognormal:
rr_ln <- rank_regression(

x = prob_tbl$x,
y = prob_tbl$prob,
status = prob_tbl$status,
distribution = "lognormal3"

)

conf_betabin_ln <- confint_betabinom(
x = prob_tbl$x,
status = prob_tbl$status,
dist_params = rr_ln$coefficients,
distribution = "lognormal3"

)

plot_lognormal <- plot_prob(
x = prob_tbl$x,
y = prob_tbl$prob,
status = prob_tbl$status,
id = prob_tbl$id,
distribution = "lognormal"

)

plot_reg_lognormal <- plot_mod(
p_obj = plot_lognormal,
x = conf_betabin_ln$x,
y = conf_betabin_ln$prob,
dist_params = rr_ln$coefficients,
distribution = "lognormal3"

)

plot_conf_beta_ln <- plot_conf(
p_obj = plot_reg_lognormal,
x = list(conf_betabin_ln$x),

88 plot_mod

y = list(conf_betabin_ln$lower_bound, conf_betabin_ln$upper_bound),
direction = "y",
distribution = "lognormal3"

)

plot_mod Add Estimated Population Line(s) to a Probability Plot

Description

This function adds one or multiple estimated regression lines to an existing probability plot (plot_prob).
Depending on the output of the functions rank_regression, ml_estimation, mixmod_regression or
mixmod_em one or multiple lines are plotted.

Usage

plot_mod(p_obj, x, ...)

S3 method for class 'wt_model'
plot_mod(p_obj, x, title_trace = "Fit", ...)

Arguments

p_obj A plot object returned by plot_prob.

x A list with class wt_model returned by rank_regression, ml_estimation, mix-
mod_regression or mixmod_em.

... Further arguments passed to or from other methods. Currently not used.

title_trace A character string which is assigned to the legend trace.

Details

The name of the legend entry is a combination of the title_trace and the number of determined
subgroups from mixmod_regression or mixmod_em. If title_trace = "Line" and the data could
be split in two groups, the legend entries would be "Line: 1" and "Line: 2".

Value

A plot object containing the probability plot with plotting positions and the estimated regression
line(s).

References

Meeker, William Q; Escobar, Luis A., Statistical methods for reliability data, New York: Wiley
series in probability and statistics, 1998

plot_mod 89

Examples

Reliability data:
data <- reliability_data(data = alloy, x = cycles, status = status)

Probability estimation:
prob_tbl <- estimate_cdf(data, methods = c("johnson", "kaplan"))

Rank Regression
Example 1 - Probability Plot and Regression Line Three-Parameter-Weibull:
plot_weibull <- plot_prob(prob_tbl, distribution = "weibull")
rr_weibull <- rank_regression(prob_tbl, distribution = "weibull3")

plot_reg_weibull <- plot_mod(p_obj = plot_weibull, x = rr_weibull)

Example 2 - Probability Plot and Regression Line Three-Parameter-Lognormal:
plot_lognormal <- plot_prob(prob_tbl, distribution = "lognormal")
rr_lognormal <- rank_regression(prob_tbl, distribution = "lognormal3")

plot_reg_lognormal <- plot_mod(p_obj = plot_lognormal, x = rr_lognormal)

ML Estimation
Example 3 - Probability Plot and Regression Line Two-Parameter-Weibull:
plot_weibull <- plot_prob(prob_tbl, distribution = "weibull")
ml_weibull_2 <- ml_estimation(data, distribution = "weibull")

plot_reg_weibull_2 <- plot_mod(p_obj = plot_weibull, ml_weibull_2)

Mixture Identification
Reliability data:
data_mix <- reliability_data(voltage, x = hours, status = status)

Probability estimation:
prob_mix <- estimate_cdf(

data_mix,
methods = c("johnson", "kaplan", "nelson")

)

Example 4 - Probability Plot and Regression Line Mixmod Regression:
mix_mod_rr <- mixmod_regression(prob_mix, distribution = "weibull")
plot_weibull <- plot_prob(mix_mod_rr)

plot_reg_mix_mod_rr <- plot_mod(p_obj = plot_weibull, x = mix_mod_rr)

Example 5 - Probability Plot and Regression Line Mixmod EM:
mix_mod_em <- mixmod_em(data_mix)
plot_weibull <- plot_prob(mix_mod_em)

plot_reg_mix_mod_em <- plot_mod(p_obj = plot_weibull, x = mix_mod_em)

90 plot_mod.default

plot_mod.default Add Estimated Population Line to a Probability Plot

Description

This function adds an estimated regression line to an existing probability plot (plot_prob).

Usage

Default S3 method:
plot_mod(

p_obj,
x,
dist_params,
distribution = c("weibull", "lognormal", "loglogistic", "sev", "normal", "logistic",

"weibull3", "lognormal3", "loglogistic3", "exponential", "exponential2"),
title_trace = "Fit",
...

)

Arguments

p_obj A plot object returned by plot_prob.

x A numeric vector containing the x-coordinates of the respective regression line.

dist_params A (named) numeric vector of estimated location and scale parameters for a spec-
ified distribution. The order of elements is important. First entry needs to be the
location parameter µ and the second element needs to be the scale parameter σ.
If a three-parametric model is used the third element is the threshold parameter
γ.

distribution Supposed distribution of the random variable.

title_trace A character string which is assigned to the legend trace.

... Further arguments passed to or from other methods. Currently not used.

Value

A plot object containing the probability plot with plotting positions and the estimated regression
line.

References

Meeker, William Q; Escobar, Luis A., Statistical methods for reliability data, New York: Wiley
series in probability and statistics, 1998

See Also

plot_mod

plot_mod.default 91

Examples

Vectors:
cycles <- alloy$cycles
status <- alloy$status

Probability estimation
prob_tbl <- estimate_cdf(x = cycles, status = status, method = "johnson")

Example 1: Probability Plot and Regression Line Three-Parameter-Weibull:
plot_weibull <- plot_prob(

x = prob_tbl$x,
y = prob_tbl$prob,
status = prob_tbl$status,
id = prob_tbl$id,
distribution = "weibull"

)

rr <- rank_regression(
x = prob_tbl$x,
y = prob_tbl$prob,
status = prob_tbl$status,
distribution = "weibull3"

)

plot_reg_weibull <- plot_mod(
p_obj = plot_weibull,
x = prob_tbl$x,
dist_params = rr$coefficients,
distribution = "weibull3"

)

Example 2: Probability Plot and Regression Line Three-Parameter-Lognormal:
plot_lognormal <- plot_prob(

x = prob_tbl$x,
y = prob_tbl$prob,
status = prob_tbl$status,
id = prob_tbl$id,
distribution = "lognormal"

)

rr_ln <- rank_regression(
x = prob_tbl$x,
y = prob_tbl$prob,
status = prob_tbl$status,
distribution = "lognormal3"

)

plot_reg_lognormal <- plot_mod(
p_obj = plot_lognormal,
x = prob_tbl$x,

92 plot_mod_mix

dist_params = rr_ln$coefficients,
distribution = "lognormal3"

)

Mixture Identification
Vectors:
hours <- voltage$hours
status <- voltage$status

Probability estimation:
prob_mix <- estimate_cdf(

x = hours,
status = status,
method = "johnson"

)

plot_mod_mix Add Estimated Population Lines of a Separated Mixture Model to a
Probability Plot

Description

[Soft-deprecated]
plot_mod_mix() is no longer under active development, switching to plot_mod is recommended.

Usage

plot_mod_mix(
p_obj,
x,
status,
mix_output,
distribution = c("weibull", "lognormal", "loglogistic"),
title_trace = "Fit",
...

)

Arguments

p_obj A plot object returned by plot_prob_mix.

x A numeric vector containing the x-coordinates of the respective regression line.

status A vector of binary data (0 or 1) indicating whether a unit is a right censored
observation (= 0) or a failure (= 1).

mix_output A list returned by mixmod_regression or mixmod_em, which consists of ele-
ments necessary to visualize the regression lines.

distribution Supposed distribution of the random variable.

plot_mod_mix 93

title_trace A character string which is assigned to the legend trace.

... Further arguments passed to or from other methods. Currently not used.

Details

This function adds one or multiple estimated regression lines to an existing probability plot plot_prob).
Depending on the output of the function mixmod_regression or mixmod_em one or multiple lines
are plotted.

The name of the legend entry is a combination of the title_trace and the number of determined
subgroups. If title_trace = "Line" and the data has been split in two groups, the legend entries
would be "Line: 1" and "Line: 2".

Value

A plot object containing the probability plot with plotting positions and estimated regression line(s).

References

Doganaksoy, N.; Hahn, G.; Meeker, W. Q., Reliability Analysis by Failure Mode, Quality Progress,
35(6), 47-52, 2002

Examples

Vectors:
hours <- voltage$hours
status <- voltage$status

Example 1 - Using result of mixmod_em in mix_output:
mix_mod_em <- mixmod_em(

x = hours,
status = status,
distribution = "weibull",
conf_level = 0.95,
k = 2,
method = "EM",
n_iter = 150

)

plot_weibull_em <- plot_prob_mix(
x = hours,
status = status,
id = id,
distribution = "weibull",
mix_output = mix_mod_em

)

plot_weibull_emlines <- plot_mod_mix(
p_obj = plot_weibull_em,
x = hours,
status = status,
mix_output = mix_mod_em,

94 plot_pop

distribution = "weibull"
)

Example 2 - Using result of mixmod_regression in mix_output:
john <- johnson_method(x = hours, status = status)
mix_mod_reg <- mixmod_regression(

x = john$x,
y = john$prob,
status = john$status,
distribution = "weibull"

)

plot_weibull_reg <- plot_prob_mix(
x = john$x,
status = john$status,
id = john$id,
distribution = "weibull",
mix_output = mix_mod_reg,

)

plot_weibull_reglines <- plot_mod_mix(
p_obj = plot_weibull_reg,
x = john$x,
status = john$status,
mix_output = mix_mod_reg,
distribution = "weibull"

)

plot_pop Add Population Line(s) to an Existing Grid

Description

This function adds one (or multiple) linearized CDF(s) to an existing plot grid.

Usage

plot_pop(
p_obj = NULL,
x,
dist_params_tbl,
distribution = c("weibull", "lognormal", "loglogistic", "sev", "normal", "logistic",

"exponential"),
tol = 1e-06,
title_trace = "Population",
plot_method = c("plotly", "ggplot2")

)

plot_pop 95

Arguments

p_obj A plot object to which the population line(s) is (are) added or NULL. If NULL the
population line(s) is (are) plotted in an empty grid.

x A numeric vector of length two or greater used for the x coordinates of the
population line. If length(x) == 2 a sequence of length 200 between x[1] and
x[2] is created. This sequence is equidistant with respect to the scale of the x
axis. If length(x) > 2 the elements of x are the x coordinates of the population
line.

dist_params_tbl

A data.frame. See ’Details’.

distribution Supposed distribution of the random variable. The distinction between a thresh-
old distribution and the respective standard variant is made with dist_params_tbl.

tol The failure probability is restricted to the interval [tol, 1−tol]. The default value
is in accordance with the decimal places shown in the hover for plot_method =
"plotly".

title_trace A character string which is assigned to the legend trace.

plot_method Package, which is used for generating the plot output. Only used when p_obj =
NULL. If p_obj != NULL the plot object is used to determine the plot method.

Details

dist_params_tbl is a data.frame with parameter columns. An overview of the distribution-
specific parameters and their order can be found in section ’Distributions’.

If only one population line should be displayed, a numeric vector is also supported. The order of
the vector elements also corresponds to the table in section ’Distributions’.

Value

A plot object containing the linearized CDF(s).

Distributions

The following table summarizes the available distributions and their parameters

• location parameter µ,

• scale parameter σ or θ and

• threshold parameter γ.

The column order within dist_params_tbl is given in the table header.

distribution dist_params_tbl[1] dist_params_tbl[2] dist_params_tbl[3]
"sev" µ σ -
"weibull" µ σ (γ)
"normal" µ σ -
"lognormal" µ σ (γ)
"logistic" µ σ -
"loglogistic" µ σ (γ)

96 plot_pop

"exponential" θ (γ) -

Examples

x <- rweibull(n = 100, shape = 1, scale = 20000)

Example 1 - Two-parametric straight line:
pop_weibull <- plot_pop(

p_obj = NULL,
x = range(x),
dist_params_tbl = c(log(20000), 1),
distribution = "weibull"

)

Example 2 - Three-parametric curved line:
x2 <- rweibull(n = 100, shape = 1, scale = 20000) + 5000

pop_weibull_2 <- plot_pop(
p_obj = NULL,
x = x2,
dist_params_tbl = c(log(20000 - 5000), 1, 5000),
distribution = "weibull"

)

Example 3 - Multiple lines:
pop_weibull_3 <- plot_pop(

p_obj = NULL,
x = x,
dist_params_tbl = data.frame(
p_1 = c(log(20000), log(20000), log(20000)),
p_2 = c(1, 1.5, 2)
),

distribution = "weibull",
plot_method = "ggplot2"

)

Example 4 - Compare two- and three-parametric distributions:
pop_weibull_4 <- plot_pop(

p_obj = NULL,
x = x,
dist_params_tbl = data.frame(

param_1 = c(log(20000), log(20000)),
param_2 = c(1, 1),
param_3 = c(NA, 2)

),
distribution = "weibull"

)

plot_prob 97

plot_prob Probability Plotting Method for Univariate Lifetime Distributions

Description

This function is used to apply the graphical technique of probability plotting. It is either applied to
the output of estimate_cdf (plot_prob.wt_cdf_estimation) or to the output of a mixture model
from mixmod_regression / mixmod_em (plot_prob.wt_model). Note that in the latter case no
distribution has to be specified because it is inferred from the model.

Usage

plot_prob(x, ...)

S3 method for class 'wt_cdf_estimation'
plot_prob(
x,
distribution = c("weibull", "lognormal", "loglogistic", "sev", "normal", "logistic",

"exponential"),
title_main = "Probability Plot",
title_x = "Characteristic",
title_y = "Unreliability",
title_trace = "Sample",
plot_method = c("plotly", "ggplot2"),
...

)

S3 method for class 'wt_model'
plot_prob(
x,
title_main = "Probability Plot",
title_x = "Characteristic",
title_y = "Unreliability",
title_trace = "Sample",
plot_method = c("plotly", "ggplot2"),
...

)

Arguments

x A tibble with class wt_cdf_estimation returned by estimate_cdf or a list with
class wt_model returned by rank_regression, ml_estimation, mixmod_regression
or mixmod_em.

... Further arguments passed to or from other methods. Currently not used.

distribution Supposed distribution of the random variable.

title_main A character string which is assigned to the main title.

98 plot_prob

title_x A character string which is assigned to the title of the x axis.

title_y A character string which is assigned to the title of the y axis.

title_trace A character string which is assigned to the legend trace.

plot_method Package, which is used for generating the plot output.

Details

If x was split by mixmod_em, estimate_cdf with method "johnson" is applied to subgroup-specific
data. The calculated plotting positions are shaped according to the determined split in mixmod_em.

In mixmod_regression a maximum of three subgroups can be determined and thus being plotted.
The intention of this function is to give the user a hint for the existence of a mixture model. An
in-depth analysis should be done afterwards.

For plot_method == "plotly" the marker label for x and y are determined by the first word pro-
vided in the argument title_x and title_y respectively, i.e. if title_x = "Mileage in km" the x
label of the marker is "Mileage". The name of the legend entry is a combination of the title_trace
and the number of determined subgroups (if any). If title_trace = "Group" and the data has been
split in two groups, the legend entries are "Group: 1" and "Group: 2".

Value

A plot object containing the probability plot.

References

Meeker, William Q; Escobar, Luis A., Statistical methods for reliability data, New York: Wiley
series in probability and statistics, 1998

Examples

Reliability data:
data <- reliability_data(

alloy,
x = cycles,
status = status

)

Probability estimation:
prob_tbl <- estimate_cdf(

data,
methods = c("johnson", "kaplan")

)

Example 1 - Probability Plot Weibull:
plot_weibull <- plot_prob(prob_tbl)

Example 2 - Probability Plot Lognormal:
plot_lognormal <- plot_prob(

x = prob_tbl,
distribution = "lognormal"

)

plot_prob.default 99

Mixture identification
Reliability data:
data_mix <- reliability_data(

voltage,
x = hours,
status = status

)

prob_mix <- estimate_cdf(
data_mix,
methods = c("johnson", "kaplan")

)

Example 3 - Mixture identification using mixmod_regression:
mix_mod_rr <- mixmod_regression(prob_mix)

plot_mix_mod_rr <- plot_prob(x = mix_mod_rr)

Example 4 - Mixture identification using mixmod_em:
mix_mod_em <- mixmod_em(data_mix)

plot_mix_mod_em <- plot_prob(x = mix_mod_em)

plot_prob.default Probability Plotting Method for Univariate Lifetime Distributions

Description

This function is used to apply the graphical technique of probability plotting.

Usage

Default S3 method:
plot_prob(

x,
y,
status,
id = rep("XXXXXX", length(x)),
distribution = c("weibull", "lognormal", "loglogistic", "sev", "normal", "logistic",

"exponential"),
title_main = "Probability Plot",
title_x = "Characteristic",
title_y = "Unreliability",
title_trace = "Sample",
plot_method = c("plotly", "ggplot2"),
...

)

100 plot_prob.default

Arguments

x A numeric vector which consists of lifetime data. Lifetime data could be ev-
ery characteristic influencing the reliability of a product, e.g. operating time
(days/months in service), mileage (km, miles), load cycles.

y A numeric vector which consists of estimated failure probabilities regarding the
lifetime data in x.

status A vector of binary data (0 or 1) indicating whether a unit is a right censored
observation (= 0) or a failure (= 1).

id Identification for every unit.

distribution Supposed distribution of the random variable.

title_main A character string which is assigned to the main title.

title_x A character string which is assigned to the title of the x axis.

title_y A character string which is assigned to the title of the y axis.

title_trace A character string which is assigned to the legend trace.

plot_method Package, which is used for generating the plot output.

... Further arguments passed to or from other methods. Currently not used.

Details

For plot_method == "plotly" the marker label for x and y are determined by the first word pro-
vided in the argument title_x and title_y respectively, i.e. if title_x = "Mileage in km" the x
label of the marker is "Mileage".

Value

A plot object containing the probability plot.

References

Meeker, William Q; Escobar, Luis A., Statistical methods for reliability data, New York: Wiley
series in probability and statistics, 1998

See Also

plot_prob

Examples

Vectors:
cycles <- alloy$cycles
status <- alloy$status

Probability estimation:
prob_tbl <- estimate_cdf(

x = cycles,
status = status,
method = "johnson"

plot_prob_mix 101

)

Example 1: Probability Plot Weibull:
plot_weibull <- plot_prob(

x = prob_tbl$x,
y = prob_tbl$prob,
status = prob_tbl$status,
id = prob_tbl$id

)

Example 2: Probability Plot Lognormal:
plot_lognormal <- plot_prob(

x = prob_tbl$x,
y = prob_tbl$prob,
status = prob_tbl$status,
id = prob_tbl$id,
distribution = "lognormal"

)

plot_prob_mix Probability Plot for Separated Mixture Models

Description

[Soft-deprecated]
plot_prob_mix() is no longer under active development, switching to plot_prob is recommended.

Usage

plot_prob_mix(
x,
status,
id = rep("XXXXXX", length(x)),
distribution = c("weibull", "lognormal", "loglogistic"),
mix_output,
title_main = "Probability Plot",
title_x = "Characteristic",
title_y = "Unreliability",
title_trace = "Sample",
plot_method = c("plotly", "ggplot2"),
...

)

Arguments

x A numeric vector which consists of lifetime data. Lifetime data could be ev-
ery characteristic influencing the reliability of a product, e.g. operating time
(days/months in service), mileage (km, miles), load cycles.

102 plot_prob_mix

status A vector of binary data (0 or 1) indicating whether a unit is a right censored
observation (= 0) or a failure (= 1).

id Identification for every unit.

distribution Supposed distribution of the random variable.

mix_output A list returned by mixmod_regression or mixmod_em, which consists of values
necessary to visualize the subgroups.The default value of mix_output is NULL.

title_main A character string which is assigned to the main title.

title_x A character string which is assigned to the title of the x axis.

title_y A character string which is assigned to the title of the y axis.

title_trace A character string which is assigned to the legend trace.

plot_method Package, which is used for generating the plot output.

... Further arguments passed to or from other methods. Currently not used.

Details

This function is used to apply the graphical technique of probability plotting to univariate mixture
models that have been separated with functions mixmod_regression or mixmod_em.

If data has been split by mixmod_em the function johnson_method is applied to subgroup-specific
data. The calculated plotting positions are shaped regarding the obtained split of the used splitting
function.

In mixmod_regression a maximum of three subgroups can be determined and thus being plotted.
The intention of this function is to give the user a hint for the existence of a mixture model. An
in-depth analysis should be done afterwards.

The marker label for x and y are determined by the first word provided in the argument title_x and
title_y respectively, i.e. if title_x = "Mileage in km" the x label of the marker is "Mileage".

The name of the legend entry is a combination of the title_trace and the number of determined
subgroups (if any). If title_trace = "Group" and the data has been split in two groups, the legend
entries are "Group: 1" and "Group: 2".

References

Doganaksoy, N.; Hahn, G.; Meeker, W. Q., Reliability Analysis by Failure Mode, Quality Progress,
35(6), 47-52, 2002

See Also

plot_prob

Examples

Vectors:
hours <- voltage$hours
status <- voltage$status

Example 1 - Using result of mixmod_em:
mix_mod_em <- mixmod_em(

predict_prob 103

x = hours,
status = status

)

plot_weibull_em <- plot_prob_mix(
x = hours,
status = status,
distribution = "weibull",
mix_output = mix_mod_em

)

Example 2 - Using result of mixmod_regression:
john <- estimate_cdf(

x = hours,
status = status,
method = "johnson"

)

mix_mod_reg <- mixmod_regression(
x = john$x,
y = john$prob,
status = john$status,
distribution = "weibull"

)

plot_weibull_reg <- plot_prob_mix(
x = hours,
status = status,
distribution = "weibull",
mix_output = mix_mod_reg

)

predict_prob Prediction of Failure Probabilities for Parametric Lifetime Distribu-
tions

Description

This function predicts the (failure) probabilities of a parametric lifetime distribution using the (log-
)location-scale parameterization.

Usage

predict_prob(
q,
dist_params,
distribution = c("weibull", "lognormal", "loglogistic", "sev", "normal", "logistic",

"weibull3", "lognormal3", "loglogistic3", "exponential", "exponential2")
)

104 predict_prob

Arguments

q A numeric vector of quantiles.

dist_params A vector of parameters. An overview of the distribution-specific parameters can
be found in section ’Distributions’.

distribution Supposed distribution of the random variable.

Details

For a given set of parameters and specified quantiles the probabilities of the chosen model are
determined.

Value

A vector with predicted (failure) probabilities.

Distributions

The following table summarizes the available distributions and their parameters

• location parameter µ,

• scale parameter σ or θ and

• threshold parameter γ.

The order within dist_params is given in the table header.

distribution dist_params[1] dist_params[2] dist_params[3]
"sev" µ σ -
"weibull" µ σ -
"weibull3" µ σ γ
"normal" µ σ -
"lognormal" µ σ -
"lognormal3" µ σ γ
"logistic" µ σ -
"loglogistic" µ σ -
"loglogistic3" µ σ γ
"exponential" θ - -
"exponential2" θ γ -

Examples

Example 1 - Predicted probabilities for a two-parameter weibull distribution:
probs_weib2 <- predict_prob(

q = c(15, 48, 124),
dist_params = c(5, 0.5),
distribution = "weibull"

)

Example 2 - Predicted quantiles for a three-parameter weibull distribution:

predict_quantile 105

probs_weib3 <- predict_prob(
q = c(25, 58, 134),
dist_params = c(5, 0.5, 10),
distribution = "weibull3"

)

predict_quantile Prediction of Quantiles for Parametric Lifetime Distributions

Description

This function predicts the quantiles of a parametric lifetime distribution using the (log-)location-
scale parameterization.

Usage

predict_quantile(
p,
dist_params,
distribution = c("weibull", "lognormal", "loglogistic", "sev", "normal", "logistic",

"weibull3", "lognormal3", "loglogistic3", "exponential", "exponential2")
)

Arguments

p A numeric vector of probabilities.

dist_params A vector of parameters. An overview of the distribution-specific parameters can
be found in section ’Distributions’.

distribution Supposed distribution of the random variable.

Details

For a given set of parameters and specified probabilities the quantiles of the chosen model are
determined.

Value

A vector with predicted quantiles.

Distributions

The following table summarizes the available distributions and their parameters

• location parameter µ,

• scale parameter σ or θ and

• threshold parameter γ.

106 rank_regression

The order within dist_params is given in the table header.

distribution dist_params[1] dist_params[2] dist_params[3]
"sev" µ σ -
"weibull" µ σ -
"weibull3" µ σ γ
"normal" µ σ -
"lognormal" µ σ -
"lognormal3" µ σ γ
"logistic" µ σ -
"loglogistic" µ σ -
"loglogistic3" µ σ γ
"exponential" θ - -
"exponential2" θ γ -

Examples

Example 1 - Predicted quantiles for a two-parameter weibull distribution:
quants_weib2 <- predict_quantile(

p = c(0.01, 0.1, 0.5),
dist_params = c(5, 0.5),
distribution = "weibull"

)

Example 2 - Predicted quantiles for a three-parameter weibull distribution:
quants_weib3 <- predict_quantile(

p = c(0.01, 0.1, 0.5),
dist_params = c(5, 0.5, 10),
distribution = "weibull3"

)

rank_regression Rank Regression for Parametric Lifetime Distributions

Description

This function fits a regression model to a linearized parametric lifetime distribution for complete
and (multiple) right-censored data. The parameters are determined in the frequently used (log-
)location-scale parameterization.

For the Weibull, estimates are additionally transformed such that they are in line with the parame-
terization provided by the stats package (see Weibull).

rank_regression 107

Usage

rank_regression(x, ...)

S3 method for class 'wt_cdf_estimation'
rank_regression(
x,
distribution = c("weibull", "lognormal", "loglogistic", "sev", "normal", "logistic",

"weibull3", "lognormal3", "loglogistic3", "exponential", "exponential2"),
conf_level = 0.95,
direction = c("x_on_y", "y_on_x"),
control = list(),
options = list(),
...

)

Arguments

x A tibble with class wt_cdf_estimation returned by estimate_cdf.

... Further arguments passed to or from other methods. Currently not used.

distribution Supposed distribution of the random variable.

conf_level Confidence level of the interval.

direction Direction of the dependence in the regression model.

control A list of control parameters (see optim).
control is in use only if a three-parametric distribution was specified. If this
is the case, optim (always with method = "L-BFGS-B" and control$fnscale =
-1) is called to determine the threshold parameter (see r_squared_profiling).

options A list of named options. See ’Options’.

Details

The confidence intervals of the parameters are computed on the basis of a heteroscedasticity-
consistent (HC) covariance matrix. Here it should be said that there is no statistical foundation
to determine the standard errors of the parameters using Least Squares in context of Rank Regres-
sion. For an accepted statistical method use maximum likelihood.

If options = list(conf_method = "Mock"), the argument distribution must be one of "weibull"
and "weibull3". The approximated confidence intervals for the Weibull parameters can then only
be estimated on the following confidence levels (see ’References’ (Mock, 1995)):

• conf_level = 0.90

• conf_level = 0.95

• conf_level = 0.99

Value

A list with classes wt_model, wt_rank_regression and wt_model_estimation which contains:

108 rank_regression

• coefficients : A named vector of estimated coefficients (parameters of the assumed distri-
bution). Note: The parameters are given in the (log-)location-scale-parameterization.

• confint : Confidence intervals for the (log-)location-scale parameters. For threshold distri-
butions no confidence interval for the threshold parameter can be computed. If direction =
"y_on_x", back-transformed confidence intervals are provided.

• shape_scale_coefficients : Only included if distribution is "weibull" or "weibull3"
(parameterization used in Weibull).

• shape_scale_confint : Only included if distribution is "weibull" or "weibull3". Ap-
proximated confidence intervals for scale η and shape β (and threshold γ if distribution =
"weibull3").

• varcov : Only provided if options = list(conf_method = "HC") (default). Estimated heteroscedasticity-
consistent (HC) variance-covariance matrix for the (log-)location-scale parameters.

• r_squared : Coefficient of determination.

• data : A tibble with class wt_cdf_estimation returned by estimate_cdf.

• distribution : Specified distribution.

• direction : Specified direction.

If more than one method was specified in estimate_cdf, the resulting output is a list with class
wt_model_estimation_list. In this case, each list element has classes wt_rank_regression
and wt_model_estimation, and the items listed above, are included.

Options

Argument options is a named list of options:

Name Value
conf_method "HC" (default) or "Mock"

References

• Mock, R., Methoden zur Datenhandhabung in Zuverlässigkeitsanalysen, vdf Hochschulverlag
AG an der ETH Zürich, 1995

• Meeker, William Q; Escobar, Luis A., Statistical methods for reliability data, New York: Wiley
series in probability and statistics, 1998

Examples

Reliability data preparation:
Data for two-parametric model:
data_2p <- reliability_data(

shock,
x = distance,
status = status

)

Data for three-parametric model:

rank_regression 109

data_3p <- reliability_data(
alloy,
x = cycles,
status = status

)

Probability estimation:
prob_tbl_2p <- estimate_cdf(

data_2p,
methods = "johnson"

)

prob_tbl_3p <- estimate_cdf(
data_3p,
methods = "johnson"

)

prob_tbl_mult <- estimate_cdf(
data_3p,
methods = c("johnson", "kaplan")

)

Example 1 - Fitting a two-parametric weibull distribution:
rr_2p <- rank_regression(

x = prob_tbl_2p,
distribution = "weibull"

)

Example 2 - Fitting a three-parametric lognormal distribution:
rr_3p <- rank_regression(

x = prob_tbl_3p,
distribution = "lognormal3",
conf_level = 0.99

)

Example 3 - Fitting a three-parametric lognormal distribution using
direction and control arguments:
rr_3p_control <- rank_regression(

x = prob_tbl_3p,
distribution = "lognormal3",
conf_level = 0.99,
direction = "y_on_x",
control = list(trace = TRUE, REPORT = 1)

)

Example 4 - Fitting a three-parametric loglogistic distribution if multiple
methods in estimate_cdf were specified:
rr_lists <- rank_regression(

x = prob_tbl_mult,
distribution = "loglogistic3",
conf_level = 0.90

)

110 rank_regression.default

rank_regression.default

Rank Regression for Parametric Lifetime Distributions

Description

This function fits a regression model to a linearized parametric lifetime distribution for complete
and (multiple) right-censored data. The parameters are determined in the frequently used (log-
)location-scale parameterization.

For the Weibull, estimates are additionally transformed such that they are in line with the parame-
terization provided by the stats package (see Weibull).

Usage

Default S3 method:
rank_regression(
x,
y,
status,
distribution = c("weibull", "lognormal", "loglogistic", "sev", "normal", "logistic",

"weibull3", "lognormal3", "loglogistic3", "exponential", "exponential2"),
conf_level = 0.95,
direction = c("x_on_y", "y_on_x"),
control = list(),
options = list(),
...

)

Arguments

x A numeric vector which consists of lifetime data. Lifetime data could be ev-
ery characteristic influencing the reliability of a product, e.g. operating time
(days/months in service), mileage (km, miles), load cycles.

y A numeric vector which consists of estimated failure probabilities regarding the
lifetime data in x.

status A vector of binary data (0 or 1) indicating whether a unit is a right censored
observation (= 0) or a failure (= 1).

distribution Supposed distribution of the random variable.
conf_level Confidence level of the interval.
direction Direction of the dependence in the regression model.
control A list of control parameters (see optim).

control is in use only if a three-parametric distribution was specified. If this
is the case, optim (always with method = "L-BFGS-B" and control$fnscale =
-1) is called to determine the threshold parameter (see r_squared_profiling).

options A list of named options. See ’Options’.
... Further arguments passed to or from other methods. Currently not used.

rank_regression.default 111

Details

The confidence intervals of the parameters are computed on the basis of a heteroscedasticity-
consistent (HC) covariance matrix. Here it should be said that there is no statistical foundation
to determine the standard errors of the parameters using Least Squares in context of Rank Regres-
sion. For an accepted statistical method use maximum likelihood.

If options = list(conf_method = "Mock"), the argument distribution must be one of "weibull"
and "weibull3". The approximated confidence intervals for the Weibull parameters can then only
be estimated on the following confidence levels (see ’References’ (Mock, 1995)):

• conf_level = 0.90

• conf_level = 0.95

• conf_level = 0.99

Value

A list with classes wt_model, wt_rank_regression and wt_model_estimation which contains:

• coefficients : A named vector of estimated coefficients (parameters of the assumed distri-
bution). Note: The parameters are given in the (log-)location-scale-parameterization.

• confint : Confidence intervals for the (log-)location-scale parameters. For threshold distri-
butions no confidence interval for the threshold parameter can be computed. If direction =
"y_on_x", back-transformed confidence intervals are provided.

• shape_scale_coefficients : Only included if distribution is "weibull" or "weibull3"
(parameterization used in Weibull).

• shape_scale_confint : Only included if distribution is "weibull" or "weibull3". Ap-
proximated confidence intervals for scale η and shape β (and threshold γ if distribution =
"weibull3").

• varcov : Only provided if options = list(conf_method = "HC") (default). Estimated heteroscedasticity-
consistent (HC) variance-covariance matrix for the (log-)location-scale parameters.

• r_squared : Coefficient of determination.
• data : A tibble with columns x, status and prob.
• distribution : Specified distribution.
• direction : Specified direction.

Options

Argument options is a named list of options:

Name Value
conf_method "HC" (default) or "Mock"

References

• Mock, R., Methoden zur Datenhandhabung in Zuverlässigkeitsanalysen, vdf Hochschulverlag
AG an der ETH Zürich, 1995

• Meeker, William Q; Escobar, Luis A., Statistical methods for reliability data, New York: Wiley
series in probability and statistics, 1998

112 reliability_data

See Also

rank_regression

Examples

Vectors:
obs <- seq(10000, 100000, 10000)
status_1 <- c(0, 1, 1, 0, 0, 0, 1, 0, 1, 0)

cycles <- alloy$cycles
status_2 <- alloy$status

Example 1 - Fitting a two-parametric weibull distribution:
tbl_john <- estimate_cdf(

x = obs,
status = status_1,
method = "johnson"

)

rr <- rank_regression(
x = tbl_john$x,
y = tbl_john$prob,
status = tbl_john$status,
distribution = "weibull",
conf_level = 0.90

)

Example 2 - Fitting a three-parametric lognormal distribution:
tbl_kaplan <- estimate_cdf(

x = cycles,
status = status_2,
method = "kaplan"

)

rr_2 <- rank_regression(
x = tbl_kaplan$x,
y = tbl_kaplan$prob,
status = tbl_kaplan$status,
distribution = "lognormal3"

)

reliability_data Reliability Data

Description

Create consistent reliability data based on an existing data.frame (preferred) or on multiple equal
length vectors.

reliability_data 113

Usage

reliability_data(data = NULL, x, status, id = NULL, .keep_all = FALSE)

Arguments

data Either NULL or a data.frame. If data is NULL, x, status and id must be vectors
containing the data. Otherwise x, status and id can be either column names or
column positions.

x Lifetime data, that means any characteristic influencing the reliability of a prod-
uct, e.g. operating time (days/months in service), mileage (km, miles), load
cycles.

status Binary data (0 or 1) indicating whether a unit is a right censored observation (=
0) or a failure (= 1).

id Identification of every unit.

.keep_all If TRUE keep remaining variables in data.

Value

A tibble with class wt_reliability_data containing the following columns (if .keep_all = FALSE):

• x : Lifetime characteristic.

• status : Binary data (0 or 1) indicating whether a unit is a right censored observation (= 0)
or a failure (= 1).

• id : Identification for every unit.

If .keep_all = TRUE, the remaining columns of data are also preserved.

If !is.null(data) the attribute characteristic holds the name of the characteristic described
by x. Otherwise it is set to "x".

Examples

Example 1 - Based on an existing data.frame/tibble and column names:
data <- reliability_data(

data = shock,
x = distance,
status = status

)

Example 2 - Based on an existing data.frame/tibble and column positions:
data_2 <- reliability_data(

data = shock,
x = 1,
status = 3

)

Example 3 - Keep all variables of the tibble/data.frame entered to argument data:
data_3 <- reliability_data(

data = shock,
x = distance,

114 r_squared_profiling

status = status,
.keep_all = TRUE

)

Example 4 - Based on vectors:
cycles <- alloy$cycles
state <- alloy$status
id <- "XXXXXX"

data_4 <- reliability_data(
x = cycles,
status = state,
id = id

)

r_squared_profiling R-Squared-Profile Function for Parametric Lifetime Distributions with
Threshold

Description

This function evaluates the coefficient of determination with respect to a given threshold parameter
of a parametric lifetime distribution. In terms of Rank Regression this function can be optimized
(optim) to estimate the threshold parameter.

Usage

r_squared_profiling(x, ...)

S3 method for class 'wt_cdf_estimation'
r_squared_profiling(
x,
thres,
distribution = c("weibull3", "lognormal3", "loglogistic3", "exponential2"),
direction = c("x_on_y", "y_on_x"),
...

)

Arguments

x A tibble with class wt_cdf_estimation returned by estimate_cdf.

... Further arguments passed to or from other methods. Currently not used.

thres A numeric value for the threshold parameter.

distribution Supposed parametric distribution of the random variable.

direction Direction of the dependence in the regression model.

r_squared_profiling 115

Value

Returns the coefficient of determination with respect to the threshold parameter thres.

Examples

Data:
data <- reliability_data(

alloy,
x = cycles,
status = status

)

Probability estimation:
prob_tbl <- estimate_cdf(

data,
methods = "johnson"

)

Determining the optimal coefficient of determination:
Range of threshold parameter must be smaller than the first failure:
threshold <- seq(

0,
min(
dplyr::pull(

dplyr::filter(
prob_tbl,
status == 1,
x == min(x)

),
x

) - 0.1
),
length.out = 100

)

Coefficient of determination with respect to threshold values:
profile_r2 <- r_squared_profiling(

x = dplyr::filter(
prob_tbl,
status == 1

),
thres = threshold,
distribution = "weibull3"

)

Threshold value (among the candidates) that maximizes the coefficient of determination:
threshold[which.max(profile_r2)]

plot:
plot(

threshold,
profile_r2,

116 r_squared_profiling.default

type = "l"
)
abline(

v = threshold[which.max(profile_r2)],
h = max(profile_r2),
col = "red"

)

r_squared_profiling.default

R-Squared-Profile Function for Parametric Lifetime Distributions with
Threshold

Description

This function evaluates the coefficient of determination with respect to a given threshold parameter
of a parametric lifetime distribution. In terms of Rank Regression this function can be optimized
(optim) to estimate the threshold parameter.

Usage

Default S3 method:
r_squared_profiling(
x,
y,
thres,
distribution = c("weibull3", "lognormal3", "loglogistic3", "exponential2"),
direction = c("x_on_y", "y_on_x"),
...

)

Arguments

x A numeric vector which consists of lifetime data. Lifetime data could be ev-
ery characteristic influencing the reliability of a product, e.g. operating time
(days/months in service), mileage (km, miles), load cycles.

y A numeric vector which consists of estimated failure probabilities regarding the
lifetime data in x.

thres A numeric value for the threshold parameter.

distribution Supposed parametric distribution of the random variable.

direction Direction of the dependence in the regression model.

... Further arguments passed to or from other methods. Currently not used.

Value

Returns the coefficient of determination with respect to the threshold parameter thres.

r_squared_profiling.default 117

See Also

r_squared_profiling

Examples

Vectors:
cycles <- alloy$cycles
status <- alloy$status

Probability estimation:
prob_tbl <- estimate_cdf(

x = cycles,
status = status,
method = "johnson"

)

Determining the optimal coefficient of determination:
Range of threshold parameter must be smaller than the first failure:
threshold <- seq(

0,
min(cycles[status == 1]) - 0.1,
length.out = 100

)

Coefficient of determination with respect to threshold values:
profile_r2 <- r_squared_profiling(

x = prob_tbl$x[prob_tbl$status == 1],
y = prob_tbl$prob[prob_tbl$status == 1],
thres = threshold,
distribution = "weibull3"

)

Threshold value (among the candidates) that maximizes the
coefficient of determination:
threshold[which.max(profile_r2)]

plot:
plot(

threshold,
profile_r2,
type = "l"

)
abline(

v = threshold[which.max(profile_r2)],
h = max(profile_r2),
col = "red"

)

118 voltage

shock Distance to Failure for Vehicle Shock Absorbers

Description

Distance to failure for 38 vehicle shock absorbers.

Usage

shock

Format

A tibble with 38 rows and 3 variables:

distance Observed distance.

failure_mode One of two failure modes (mode_1 and mode_2) or censored if no failure occurred.

status If failure_mode is either mode_1 or mode_2 this is 1 else 0.

Source

Meeker, William Q; Escobar, Luis A., Statistical Methods for Reliability Data, New York: Wiley
series in probability and statistics (1998, p.630)

voltage High Voltage Stress Test for the Dielectric Insulation of Generator ar-
mature bars

Description

A sample of 58 segments of bars were subjected to a high voltage stress test. Two failure modes
occurred, Mode D (degradation failure) and Mode E (early failure).

Usage

voltage

Format

A tibble with 58 rows and 3 variables:

hours Observed hours.

failure_mode One of two failure modes (D and E) or censored if no failure occurred.

status If failure_mode is either D or E this is 1 else 0.

voltage 119

Source

Doganaksoy, N.; Hahn, G.; Meeker, W. Q., Reliability Analysis by Failure Mode, Quality Progress,
35(6), 47-52, 2002

Index

∗ datasets
alloy, 4
field_data, 33
shock, 118
voltage, 118

alloy, 4

confint_betabinom, 4, 9, 83, 86
confint_betabinom.default, 8
confint_fisher, 11, 16, 18, 83, 86
confint_fisher.default, 14

delta method, 12, 15
delta_method, 17
dist_delay, 19, 22–24, 45, 46, 48–50, 55
dist_delay.default, 21
dist_delay_register, 23, 57
dist_delay_report, 24, 59
dist_mileage, 25, 27, 60–63, 65
dist_mileage.default, 26

estimate_cdf, 6, 28, 32, 34, 36, 46, 49, 50,
54, 61–64, 70, 71, 80, 82, 97, 98,
107, 108, 114

estimate_cdf.default, 30

field_data, 33

ggplot2, 4

johnson_method, 34

kaplan_method, 36

loglik_function, 37, 40, 77, 79
loglik_function.default, 39
loglik_profiling, 41, 44, 77, 79
loglik_profiling.default, 43

maximum likelihood, 18, 107, 111

mcs_delay, 34, 45, 49, 51, 54–56, 58
mcs_delay.default, 48
mcs_delay_data, 20, 45, 46, 49, 53
mcs_delay_register, 52, 56
mcs_delay_report, 52, 58
mcs_delays, 51
mcs_mileage, 34, 60, 62, 64, 65
mcs_mileage.default, 62
mcs_mileage_data, 25, 34, 60, 61, 63, 64
mixmod_em, 65, 69, 88, 92, 93, 97, 98, 102
mixmod_em.default, 68
mixmod_regression, 70, 74, 88, 92, 93, 97,

98, 102
mixmod_regression.default, 73
ml_estimation, 12, 15, 18, 67, 69, 76, 79, 88,

97
ml_estimation.default, 78
mr_method, 80

nelson_method, 82

optim, 37, 39, 41, 43, 76, 77, 79, 107, 110,
114, 116

plot_conf, 83, 86
plot_conf.default, 85
plot_mod, 85, 86, 88, 90, 92
plot_mod.default, 90
plot_mod_mix, 92
plot_pop, 94
plot_prob, 83, 88, 90, 93, 97, 100–102
plot_prob.default, 99
plot_prob_mix, 92, 101
plotly, 4
predict_prob, 103
predict_quantile, 105

r_squared_profiling, 107, 110, 114, 117
r_squared_profiling.default, 116
rank_regression, 5, 6, 8, 9, 71, 74, 88, 97,

106, 112

120

INDEX 121

rank_regression.default, 110
reliability_data, 28, 38, 41, 46, 49, 61, 63,

66, 76, 112

seg.control, 70, 73
segmented.lm, 70, 71, 73, 74
shock, 118

voltage, 118

Weibull, 76–79, 106, 108, 110, 111
weibulltools (weibulltools-package), 3
weibulltools-package, 3

	weibulltools-package
	alloy
	confint_betabinom
	confint_betabinom.default
	confint_fisher
	confint_fisher.default
	delta_method
	dist_delay
	dist_delay.default
	dist_delay_register
	dist_delay_report
	dist_mileage
	dist_mileage.default
	estimate_cdf
	estimate_cdf.default
	field_data
	johnson_method
	kaplan_method
	loglik_function
	loglik_function.default
	loglik_profiling
	loglik_profiling.default
	mcs_delay
	mcs_delay.default
	mcs_delays
	mcs_delay_data
	mcs_delay_register
	mcs_delay_report
	mcs_mileage
	mcs_mileage.default
	mcs_mileage_data
	mixmod_em
	mixmod_em.default
	mixmod_regression
	mixmod_regression.default
	ml_estimation
	ml_estimation.default
	mr_method
	nelson_method
	plot_conf
	plot_conf.default
	plot_mod
	plot_mod.default
	plot_mod_mix
	plot_pop
	plot_prob
	plot_prob.default
	plot_prob_mix
	predict_prob
	predict_quantile
	rank_regression
	rank_regression.default
	reliability_data
	r_squared_profiling
	r_squared_profiling.default
	shock
	voltage
	Index

